
Fast Image Classification by Evolving Partial Solutions

Olly Oechsle and Adrian F. Clark

VASE Lab, Computing and Electronic Systems
University of Essex, Colchester, CO4 3SQ, UK

{ooechs,alien}@essex.ac.uk

Abstract This paper presents a scheme for improving the speed of evolving clas-
sifiers by genetic programming. It works by evolving partial solutions, each ca-
pable of distinguishing a single class. The technique is demonstrated on several
problems in image classification and its speed of convergence is compared with
conventional genetic programming.

1 Introduction

Research has been conducted into computer vision for roughly 50 years, yet the ‘holy
grail’ of a generic artificial vision system still eludes us — and is likely to do so for some
years to come. Nevertheless, there have been some impressive feats in sub-disciplines
such as inspection, surveillance and 3D reconstruction. The authors’ research is moti-
vated by the wish to develop generic capabilities that can be tailored to specific vision
tasks purely through training. In this context, Genetic Programming (GP) is attractive
because it is the only machine learning technique currently available that is able to
accept as input pixels straight from a camera and generate as output features, labels,
etc.

Developing image processing operators and systems by GP is slow for several rea-
sons. Firstly, the vast variability of natural images means that training involves a sig-
nificant number of images if robustness is to be obtained, and the fitness function must
evaluate each individual in each generation against the entire training set. Secondly, im-
age processing operators typically involve processing regions rather than single pixels,
and this is slow if the operators are themselves obtained by GP. And finally, despite
its generality and flexibility, GP converges to a solution comparatively slowly. The ma-
jor contribution of this paper is a scheme that makes possible more rapid evolution of
solutions where more than one ‘answer’ is possible.

The context for the research reported herein is image classification, wherein regions
or features in images are assigned to one of several categories. The particular aim was
to generate vision systems that are able to cope with a larger number of classes than
previous GP-based classification work; a brief summary of such work is presented in
Section 2.1. Its development was motivated by AdaBoost [?], which improves the per-
formance of a set of weak classifiers discovered by a separate learning algorithm. That
technique has been used to great effect in, for example, face recognition using only the
sums and differences of the pixels of rectangular image regions [?]. Although AdaBoost
could be applied to GP, the fact that it involves multiple training runs would make the
overall process very slow.



The ‘partial solution’ technique presented essentially works by increasing the rate
of convergence. Existing mechanisms for achieving this are reviewed in Section 2.2,
while the technique itself is described in Section 3. Two disparate image classification
tasks — simple shape recognition and automatic number plate recognition (ANPR)
— are described in Section 4 and the performance of the ‘partial solution’ approach
is compared with other GP tools. Finally, Section 5 presents conclusions and outlines
further work.

2 Previous Work

2.1 Classification by Genetic Programming

The first application of GP in the computer vision domain appears to be the work by
Tackett, who used GP to evolve an automatic recognition system to recognise targets in
military environments [1]. He introduced what has become a common theme in the use
GP for computer vision, namely the evolution of feature-specific detectors from a set of
quantities calculated from the region around a pixel; Tackett provided spatial features
consisting of the means and standard deviations of regions of different sizes. The re-
sults obtained from the evolved detector were compared with those from an multi-layer
perceptron neural network; it was found that GP delivered the more accurate solution.

In developing the GP-based solution to this problem, Tackett knew that a detection
rate of only 96% was required, and he was able to terminate the GP when this rate was
achieved. This luxury was not afforded to the neural network however, and in attempting
to achieve a 100% success rate it is likely that it actually over-fitted (i.e., fitted features
in the noise) and this contributed to its ultimately poorer performance.

Johnson, Maes and Darrell [2] used GP to locate the positions of right and left
hands on a silhouette image of a person. Instead of using pixel statistics, they used
a basic ‘point’ data structure storing (x, y) coordinates. Important points around the
silhouette, such as the corners of the bounding box, the centroid and the right-most
point, were made available as terminals; and other functions were provided that could
perform operations on two such points, such as adding them together or finding the
mid??-point between them. Their results were quite successful — their best program
could find 93% of left hands, although the programs evolved performed less well on
validation data.

Winkeler and Manjunath [3] demonstrated the use of GP for face detection using a
multi-scale windowed approach. Within each window, some fifty-two pixel-based fea-
tures were made available to the GP system, as well as other image processing features
such as Gabor features. The window was then passed over the image, at each point mak-
ing a decision whether it contained a face or not. By repeating the process with different
scales of window, the system could identify faces of different sizes. A good individual
solution cited by the authors had a tree size of over 3,000 nodes which introduced a
severe performance bottleneck. In a second experiment, a segmentation program was
developed to distinguish roughly the areas that contained faces from areas that did not.
When combined into a multi-stage approach, the processing cost was reduced by 75%
and the false negative rate was also cut significantly (although the effect on the detection
rate was not reported).



Roberts and Howard [4] used GP to recognise vehicles in aerial images. Single-
pixel-thickness circular statistics, invariant against rotation and noise, were used as fea-
tures. Four different diameters were used, with the average intensity, standard deviation,
edge count and an edge distribution measure calculated for each. The authors used a bias
ratio in their fitness function to determine the sensitivity/specificity ratio subjectively.
The evolved detector was able to detect 89% of the vehicles with a 14% false alarm rate;
however, there was no testing on unseen training data, and only relatively few images
used for training so the generality of their solution could not be established.

Zhang and Ciesielski [6] were among the first to investigate the detection and classi-
fication of multiple kinds of object. They conducted several experiments with different
image types: square/circle classification, coin classification, and hæmorrhage/aneurism
detection in retinal images. Again implemented using a windowing approach, they used
various (computationally intensive) circular and rectangular statistics. Despite a gener-
ous selection of features, a restrictive function set consisting only of arithmetic opera-
tors was used. Post-processing was used to ensure that only the centre of each object
was detected and that there multiple detections of the same object did not arise.

Song and Ciesielski [5] applied GP to texture classification and segmentation, a
task which often concerns vision researchers but is not often investigated using GP.
They showed that GP was able to outperform the C4.5 Decision Tree algorithm [?]
marginally when differentiating each texture from 47 others. However, the simplicity
of the patterns involved meant that perfect scores could be attained by both methods,
largely invalidating any conclusions drawn.

2.2 Improving the Efficiency of Genetic Programming

Arguably the simplest way to refine the performance of GP is to ‘tune’ the values of
the numeric values that appear in individual programs in each generation [?]. This can
be done randomly, using a genetic algorithm [?], or using a numeric scheme such as
conjugate gradients. While effective for optimizing the values of these constants, it has
little effect on the overall direction of evolution.

Montana [?] introduced the concept of strongly-typed genetic programming, a tech-
nique that imposes extra constraints on the tree-building and learning algorithms to im-
prove the viability of programs by ensuring that functions only operate on appropriate
data types. Montana demonstrated that the inclusion of strong typing increases the like-
lihood of generating legal programs. Solutions to a variety of problems involving vector
and matrix manipulation were presented, and that in each case the constraints imposed
by strong typing decreased the search time or improved the generalization performance
of evolved solutions.

Roberts [?] demonstrated theat caching the results of certain trees, so that they
would not require recalculation, increased the efficiency of GP. He observed that, due
to the nature of crossover, some sub-trees found in generation N will be found again in
generation N +1 and will require recalculation. If the outputs for certain common sub-
trees are calculated, then the GP process would be able to proceed more quickly. His
experiment involved the segmentation of multiple images, so the amount of memory
required to cache the result of each subtree was substantial. Roberts proposed caching
the results of evaluations to disk, provided the process of re-evaluating the result would



take longer than the time to retrieve the cache from disk. Using his method, he was
able to reduce the amount of subtree evaluations by up to 66%, which in that instance
translated into a time saving of 52%.

Roberts and Claridge [?] suggested that “choosing pixels with uniform probabilities
will under-represent important parts of the image,” based on the observation that certain
classes will sometimes dominate in a particular image. They suggested using a reduced
feature set and k-means clustering to divide the pixel training set into a number of
classes, then to randomly sample an equal number of points for each class to form
the final sample. This, they suggested, both ensures that each class is represented to
approximately the same degree and permits a solution to be evolved using fewer points
in total. However, no results were presented which quantify the benefit of this strategy
and our own experiments appear to reveal no significant difference between removing
points using the above method and removing them at random.

Monsieurs and Flerackers [?] compared several different bloat control methods on
a relatively simple regression problem. They examined various strategies which can be
used to reduce the size of program trees, such as code editing, where analytical pro-
cesses are used to identify introns (superfluous parts of the tree) and remove them. A
form of hill-climbing may also be used after crossover, which only adds new individuals
to the next generation if they are either better or smaller than their parents. A linear met-
ric or parsimony pressure can be added to the fitness function of individuals to impose
an evolutionary desire to keep individuals small, or a more brutal technique can simply
remove all individuals above a certain size. Monsieurs and Flerackers also introduced
a new technique similar to the latter but where the cutoff size was altered dynamically
to be a certain percentage higher than the tree size of the best individual. This keeps a
constraint on the size of the individuals but is not arbitrary, allowing programs to grow
to the natural size at which good solutions are most plentiful. They conducted a num-
ber of comparative experiments and found that code editing actually has little effect on
the size of trees. Hill-climbing does significantly reduce bloat, though at a slight per-
formance cost. Dynamic size limiting was shown both to keep bloat low and increase
performance of the individuals.

Several of the above [?,?,?] all reported the benefit of splitting the detector into two
or more stages, with the results from a “rough” but fast detector being fed to slower but
more discriminating detectors. The “rough” detector is a solution trained to attain high
levels of sensitivity, at the expense of lower specificity — i.e., it will generate many false
positives. This makes the problem easier and encourages a simpler, smaller program to
be evolved. The finer detectors are expected to have both high sensitivity and specificity.
As the rough detector can remove large parts of the image, there is less potential for the
fine detector to make mistakes, so the accuracy of the combined detector should also
improve.

3 Genetic Programming Using Partial Solutions

Standard GP aims to evolve a single program to solve a particular problem defined by
a set of training data. The aim is for the program to be capable of solving all the train-
ing data, which often demands a large tree structure; however, as discussed above, GP



becomes less efficient as program size increases. Large programs often include a sig-
nificant proportion of redundant code, the replacement of which through crossover and
mutation wastes processor time. Perhaps more importantly, the probability that adding
new features to large programs without causing some damage to the existing solution
decreases as the program size increases, a feature of the so-called stability-plasticity
dilemma. These two realities cause the task of the GP system to become more difficult
as evolution progresses.

In this work, the authors aimed to develop a system of Genetic Programming that
was less affected by each of these factors. Just as with the weak classifiers of [?], partial
solutions are evolved that are able to solve only part of the overall problem. Here, a
partial solution is defined as a program which can make correct classifications on part
of the training set (see Section ?? for how useful partial solutions are identified). A
number of partial solutions are combined together to form an overall solution. The
scheme continues to evolve partial solutions until the overall solution is capable of a
certain level of accuracy. As each partial solution is not expected to solve the whole
problem, their programs tend to be small and are evolved more quickly.

Crucially, once a partial solution is identified as being useful — that is, it can solve
part of the problem that has not already been solved — it is saved and the problem is
redefined to include only the remaining training data. This removes the need for already
solved data to be continuously re-evaluated, as is the case with standard GP, and also
ensures that the knowledge of the partial solution is protected.

In contrast again with regular GP, partial solution(s) may be identified at any stage
during the evolution of a complete solution, so an entire generation does not have to
be executed before a decision is taken. This is because the criteria needed to identify
a useful partial solution are not dependent on waiting until the end of the generation.
Indeed, we have found that several different partial solutions may be discovered during
the course of a single generation.

Each partial solution is treated as a binary classifier with respect to a particular class
c. The best fitness with regard to a particular class is chosen as the partial solution’s
overall fitness, calculated by dividing the total number of correct classifications TPc by
the total number of training samples N added to the number of missed classifications
FPc:

fitness = arg min
c

(
αTPc

N + βFPc

)
(1)

The inclusion of the factors α and β allows the fitness measure to be adjusted to affect
the individuals’ sensitivity or specificity.

In order to decide whether a partial solution is useful — that is to say that it is able to
solve part of the overall solution — criteria were devised, which may be summarised as
follows: “Does the individual solve part of the problem that has not been solved already
without making significant mistakes?” If the answer is yes, then the individual is added
to the strong classifier. Specifically, four criteria must be met:

1. Does the partial solution discriminate? If the solution returns only one class label
it is not capable of classifying. In our experience, GP often evolves this kind of lazy
solution in response to training data that are weighted in favour of one particular
class.



2. Is the partial solution unique? If the classifier returns the same results for every
instance as another partial solution that has already been chosen, then this classifier
is discarded as it does not add any further expertise to the solution.

3. Does the partial solution return ‘true’ for data that have not yet been solved? Each
item of training data has a field indicating whether it has already been solved. Each
candidate partial solution has to identify at least one instance that has not yet been
solved in order to be used.

4. Does the partial solution return ‘false’ for data in other classes? If a classifier
returns true for instances of one class, it should return false for all instances of
other classes. However, it may mistakenly return true for other classes provided
that they have already been completely solved by other weak classifiers.

The final criterion above permits a partial solution to make mistakes, provided that a
previous partial solution has already solved the item of training data correctly. Hence,
for the overall, combined solution, the partial solutions must be executed in the order in
which they were evolved. Each partial solution is in effect a binary classifier, identifying
either a particular class or returning false.

4 Experimental work

To demonstrate the effectiveness of the technique, it has been applied to a number of
problems concerned with image classification. Two such problems of increasingly diffi-
culty are presented here: shape classification (Section 4.1) and automatic number plate
recognition (Section 4.2). The important point here is not that the same classification
system can be trained on the problems but rather that the sub-solution approach yields
either a better solution than alternatives or that it evolves it more quickly. The vision
system employed in these experiments comprises three stages, illustrated in Figure ??:
the first segments features from background on the basis of colour and texture cues;
the second calculates interesting features that describe 2D shape; and the final stage
performs classification based on the features.

Figure 1. The vision system used for the experimental work



In the segmentation stage, a program is evolved using GP to classify each pixel
in an image as being of a particular class. This is done using regular strongly-typed
GP, the function set consisting of mathematical functions and logical operators (and,
or, not) and comparison operators (more, less equal, between) and ephemeral random
constants.

Contiguous regions of the same class are then identified, with regions associated
with the ‘background’ class (identified as part of the training set) being discarded. In the
second stage, the remaining regions are processed further to calculate some 17 metrics
that describe shape, the most important of which are:

countCorners identifies the number of corners by analysing the differential radius
about the shape’s centre of mass

countHollows identifies the number of holes in a shape
balanceX the distance between the centre of the shape’s bounding rectangle and its

centre of mass in the x direction
balanceY the distance between the centre of the shape’s bounding rectangle and its

centre of mass in the y direction
density the proportion of the pixels in the shape that are ‘solid’ (i.e., not part of a hole)
joints how many bifurcations the shape has, identified after skeletonization
ends the number of end-points in the shape, also found after skeletonization

The particular features calculated are, as far as possible, independent of scale and ori-
entation, and form the input to the final, classification stage. It is here that the problem
is solved using the partial solutions approach described above. The major parameters
controlling evolution in the two stages are given in Table 1.

segmentation classification
(regular GP) (partial solutions)

population 300 7500
generations ?? 50
P (crossover) 0.5 0.1
P (mutation) 0.1 0.1
tournament size 25% 50%
maximum nodes in tree 150 20

Table 1. Parameters controlling evolution in the two stages

In the applications described below, a set of training data was created using a graphi-
cal tool that allowed a person to mark pixels as being representative of a particular class.
The same training data were used to train all the GP engines. The graphical tool was
also used to capture a disjoint set of test data, used to evaluate the effectiveness of the
evolved classifiers.

In each case, we have evolved solutions using the authors’ own GP engine with
and without partial-solutions. Results from ECJ [?] are also given so that the reader
can make comparison with a well-established GP engine. In each experiment, evolution



was repeated five times and the results are performance of the best individual across the
runs are presented here. All experiments were conducted on a 2.5 GHz PC with 1 Gbyte
memory, and all the software is written in Java.

4.1 Shape Recognition

This experiment concerned to recognition of five different shapes of pasta (conchigle,
cavatappi, farfalle, fusilli, rigatoni). Two photographs of each type of pasta were taken
at two different distances (to yield differently-sized shapes) against a relatively plain
background. The training set comprised 135 different labelled examples, while the test
set comprised some 150 shapes, all captured with a Logitech Quickcam Pro 9000 we-
bcam. An example images labelled by the vision system is shown in Figure 2, while
the performance of the authors’ GP engine with and without the partial solutions ap-
proach is shown in Table 2 along with the figures from ECJ for comparison. Need some
comments about tree size, I think.

Although the best solution from the authors’ engine out-performs the best one from
ECJ, the differences in performance are not great. However, the time taken to arrive at
the solution is reduced by a factor of about 24, which definitely is significant. Hence,
we are able to conclude that the partial solutions approach reduces the complexity of
the classification problem so that GP is able to evolve a complete solution more rapidly.

Figure 2. Image of pasta shapes labelled by the evolved vision system

4.2 Automatic Number Plate Recognition

The second problem is the reading of the characters from photographs of vehicle li-
cense plates. This is significantly more difficult because of the number of classes to be
distinguished in the solution: some thirty different class labels are required. All the test



Technique Training (%) Test (%) Evolution time (ms)
GP with partial solutions 100.0 90.7 4,745
GP without partial solutions 96.3 86.7 114,052
ECJ 91.1 82.7 109,000

Table 2. Performances on the pasta recognition task

Technique Training (%) Test (%) Evolution time (s)
GP with partial solutions 92.0 79.5 101
GP without partial solutions 49.1 35.3 233
ECJ ?? ?? ??

Table 3. Performances on the number plate recognition task

images are of dark letters against a white background. Some 224 letters and numbers
from 35 plates were used for training and 233 unseen characters formed the test set.

(a) Number plate image (b) Letters segmented
from background

(c) Individual letters
identified

Figure 3. Automatic number plate recognition

Evolved solutions to this overall task typically consisted of about 110 partial solu-
tions, evolved in about 100 seconds (Figure 3. Do we have a labelled number plate
image to include in Figure 3? A conventional GP solution here takes only twice as
long to evolve. . . but achieves less than half the number of correct classifications. We
conclude that, for larger classification problems such as this, the ‘divide and conquer’
approach adopted in this work reduces the complexity of the overall problem into a
series of smaller ones that are simpler to solve by GP.

5 Conclusions and Further Work

Motivated by a need to make GP reach a solution as rapidly as possible in classifica-
tion problems, this paper presents a technique generates partial solution that together
contribute to the overall solution of a problem. It has been shown that the technique
improves convergence on image classification problems, including one that is large.
Although the authors have not applied the technique to problems outside the imaging
domain, they see no reason why it could not also be adapted to other problems in which
there are many possible outcomes.



The GP framework used in these experiments, including the ‘partial solutions’ im-
plementation and the tool used for data set creation, are available from the authors’
website, which will be included in the paper if it is fortunate enough to be accepted.

References

1. Walter A. Tackett. Genetic programming for feature discovery and image discrimination. In
Proceedings of the Fifth International Conference on Genetic Algorithms, pages 303–309,
1993.

2. Michael P. Johnson, Pattie Maes, and Trevor Darrell. Evolving visual routines. In Rodney A.
Brooks and Pattie Maes, editors, Artificial Life IV: Proceedings of the Fourth International
Workshop on the Synthesis and Simulation of Living Systems, pages 198–209. MIT Press,
1994.

3. Jay F. Winkeler and B. S. Manjunath. Genetic programming for object detection. In John R.
Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hitoshi Iba, and Rick L.
Riolo, editors, Proceedings of the Second Annual Conference on Genetic Programming.
Morgan-Kaufmann, 1997.

4. Simon C. Roberts and Daniel Howard. Evolution of Vehicle Detectors for Infra-red Linescan
Imagery, volume 1596 of Lecture notes in computer science, pages 110–125. Springer-Verlag,
May 1999.

5. Andy Song and Victor Ciesielski. Texture analysis by genetic programming. In Proceedings
of the IEEE Congress on Evolutionary Computation, pages 2092–2099, June 2004.

6. Mengjie Zhang and Victor Ciesielski. Genetic programming for multiple class object detec-
tion. In Norman Foo, editor, Proceedings of the 12th Australian Joint Conference on Artificial
Intelligence, pages 180–192. Springer-Verlag, December 1999.


