Pasta Experiment, Friday 12th October 2007

Training Data:	
Classes	Conchigle, Farfalle, Fusilli, Penne, Volanti
Training Set	135 shapes.
Test Set	150 shapes
Image Resolution: 640x48	0
Camera	Logitech Quickcam Pro 9000

	Training %	Test %	Time (ms)
SGGP	100.0	90.7	4745
My GP System (DT)	96.3	86.7	114062
My GP System (DRS)	97.8	89.3	6860
ECJ (DT)	91.1	82.7	109000
KNN	NA	87.3	NA

Something which occurred to me:

Solution space increases in proportion to the problem space And the fitness of an individual is necessarily independent from its implementation Therefore within any population, there may exist more than one candidate solution Which may be totally different, and therefore attack different parts of the training data Standard GP searches for only one solution at a time So the transient existence of other, useful solutions is wasted SGGP aims to make full use of all potential solutions in a generation at once. Which is why it is faster.

Size

174

Pasta Experiment 2, Thursday 8th November 2007

Training Data:	
Classes	Conchigle, Farfalle, Fusilli, Penne, Volanti
Training Set	135 shapes.
Test Set	300 shapes
Image Resolution: 640x48	0
Camera	Logitech Quickcam Pro 9000

	Training %	Test %	Time (ms)
SGGP	100.0	89.0	3872
My GP System (DT)	100.0	90.3	71022
My GP System (DRS)	96.3	89.0	2568
ECJ (DT)	97.8	83.3	69362
KNN	NA	86.7	NA

Size 26 partial solutions 37 5 372 NA

ANPR

Big ANPR, Thursday 9th November 2007

Training Data:

Classes	32 classes – numbers and letters
Training Set	175 shapes.
Test Set	455 shapes
Image Resolution: Variable	
Camera	Nikon D70

	Training %	Test %	Time (ms)
SGGP	100.0	82.2	18456
My GP System (DT)	45.1	35.6	317342
My GP System (DRS)	66.9	52.3	167606
ECJ (DT)	45.7	40.0	313349
KNN	-	85.0	-

ANPR

Size 80 classifiers 184 nr 449

-

Postures

Posture Experiment, Thursday 18th October 2007

Training Data:	
Classes	10: Open Palm, Fist, Thumbs Up, Live Long, Pinch, Closed Palm,
Training Set	50 shapes
Test Set	50 shapes
Image Resolution: 640x4	80
Camera	Logitech Quickcam Pro 9000

	Training %	Test %	Time (ms)
SGGP	100.0	82.0	2309
My GP System (DT)	84.0	64.0	145000
My GP System (DRS)	94.0	30.0	81000
ECJ (DT)	88.0	64.0	341000
KNN	NA	38	NA

NOTE: SGGP results udated since last sent to Adrian (mon 22 oct)

Postures

Point1, Point2, Okay, Bang

Colours

Colour Segmentation Experiment, 25th October 2007

Training Data:	
Classes	7: Red, Green, Black ,White, Silver, Yellow, Blue
Training Set	213 training samples with 10 colour-based features
Test Set	10471 training samples
Further info	Each sample represents a single pixel in an image
	Colours are taken from images of cars, so red samples
	Come from parts of a red car
Camera	Nikon D70

	Training %	Test %	Time (ms)	Tree Size
SGGP	100.0	96.8	12698	
My GP System (DT)	90.6	85.1	53652	
My GP System (DRS)	87.7	85.0	199115	
ECJ (DT)	87.7	84.7	125291	292
KNN	NA	99.2	NA	NA

Note: ECJ often produces vast trees

Satlog Data

Statlog SatImage Data Set

http://www.is.umk.pl/projects/datasets-stat.html#Satellite Training: 4435 samples Testing: 2000 samples Features: 36 Classes: 6

	Training %	Test %	Time (ms)	Error
SGGP	100% of 250	80.0	7742	0.200
My GP System (DT)	69.1	67.8	454021	0.322
My GP System (DRS)	82.7	80.8	79869	0.192
ECJ (DT)	73.9	73.2	1132980	0.268
KNN	NA	89.4	NA	0.106

Not very happy with this result at the moment

I

It isn't quite competitive with the results using other ML techniques If I could have some more time to improve this one, that would be good.

DRS improves significantly (15% extra on training) when using normalised data

Satlog Data

Size
NR
NR
8
315
NA

Э.

	BE SGGP			DRS SGGP			
	Hits	Time	Learners	Hits	Time	Learners	
	31	L 5173	36	30	4956	25	
	31	L 2351	. 32	42	4842	25	
	33	3731	. 35	33	4798	23	
	41	L 2309	30	36	4705	26	
	33	3706	i 32	35	4819	22	
	35	5 2535	5 34	39	4679	20	
	34	1 2486	5 29	40	48.32	24	
	28	3 2634	40	38	4703	20	
	29	2346	5 36	34	4887	21	
	34	1 3978	35	37	4800	24	
Average:	32.9	3124.9	33.9	36.4	4323.73	23	
Max:	41	L 5173	40	42	4956	26	

DRS SGGP

Comparison of SGGP using binary classifiers that are either small boolean ex With SGGP using binary classifiers that use dynamic thresholding (DRS) This is on the postures training data DRS SGGP

pressions (BE)

Sheet6

Without Normalisation Optimising 10% Optimising None										
Hits	Time	Hits/s	Hits	Time	Hits/s	5				
	3126	116	26.95	2631	85	30.95				
	2418	111	20.84	2544	107	23.78				
	2597	106	22.39	2262	90	25.13				
	2468	112	21.28	2163	98	22.07				
	2234	89	19.26	2423	99	24.47				
2	2568.6	106.8	22.14	2404.6	95.8	25.28				

With Normalisation