
Chapter 5

Validating Our GP Learning System

“Name the greatest of all inventors. Accidents”

Mark Twain

Rubber in its natural form is not particularly useful. In cold conditions it is brittle and

cracks, yet in hotter climates it readily melts. It was the accidental spillage of sulphur onto

raw rubber by Charles Goodyear in 1839 that led to the discovery of vulcanisation, the process

by which rubber can be given a stable consistency1. Similarly, the recipe for Coca Cola was

formulated inadvertantly by John Pemberton while he tried to concoct a pain relief remedy2.

In 1897, Ernest Duchesne submitted his thesis describing his discovery, again by accident,

that certain moulds would kill bacteria. Although his research went largely unnoticed it was

the first documented discovery of antibiotics3.

While science certainly does not progress through accidental discovery alone, chance hap-

penings like these can suggest avenues of exploration that had not previously been conside-

red. The inherent randomness and abstract nature of Genetic Programming would appear to

make it quite good at simulating creativity, but is this enough for it to compete with the best

of human-written pattern recognition algorithms? The goal of this Chapter is to make several

empirical comparisons in order to answer this question.

GP has already been recognised as an automatic innovator in fields outside of pattern re-

cognition. According to the company of John Koza[62], whose seminal books on GP continue

to dominate the literature, there are at least 36 recorded instances where GP has produced

human competitive solutions, mainly within the domain of evolved electronics. Twenty one

1Goodyear was unable to patent his invention and died penniless.
2Pemberton later sold the recipe for $900 and died penniless.
3Duchesne later died penniless, ironically from Tuberculosis, which his own discovery could have treated.

78

of these instances either infringe or duplicate functionality of previously patented 20th/21st

Century inventions, and two are sufficiently novel as to be patentable in their own right.

In the latter part of this Chapter, the author’s GP toolkit will be compared to a standard GP

implementation, then to other results attained using GP researchers in general, and finally to

a range of other popular classification techniques. This Chapter begins, however, with a more

thorough description of the author’s GP system, an enumeration of its novel features, and a

discussion of how a Genetic learning system, usually plagued by problem-specific paramters

can be adapted into a “black-box” generic problem solver.

5.1 Building a GP System

Although the author’s initial experiments made use of ECJ[6], a popular but cumbersome

open-source GP toolkit, it became apparent that in order to experiment with changes to the

GP system itself, it would be worthwhile to develop the GP system from scratch4. This toolkit

(named SXGP, after its alma mater) is specifically designed for evolving solutions to problems

involving vision.

Being practically minded, the author also sought to develop a toolkit whose results could

easily be put to work on different problems. ECJ is rather difficult to integrate into other

software since it relies on configuration files and does not readily output individuals as java

objects5. The author’s toolkit, SXGP, can be instantiated though a straightforward program-

ming interface, and can deploy programs in various different ways so that they may be put to

work on real problems.

The various components that make up a Genetic Programming toolkit were described in

detail in Chapter 3. There are numerous choices that one can make for each component,

so two Genetic Programming implementations can actually differ quite significantly. Thus,

before the comparisons commence, it is necessary to describe SXGP in more detail.

5.1.1 SXGP’s Specification

The main components of the author’s system are specified in Table 5.1.

4Of course, it is also more satisfying to re-invent the wheel than to use other peoples’ code!
5The author has written a library to do this for ECJ, http://vase.essex.ac.uk/ecj/ecj2java

79

Component Method Where Described

Representation Tree Page 34

Tree Builder Ramped Half and Half Page 35

Selection Method Tournament Selection Page 40

Generation Gap Generational Page 45

Fitness Function Variable Page 88

Elitism Enabled Page 37

Genetic Operators Crossover and Mutation Pages 42, 44

Population Size Variable Page 84

Generations Variable Page 84

Function Nodes Problem Dependent

Terminal Nodes Problem Dependent

Learning Paradigm Supervised

Island Selection Available Page 47

Table 5.1: Specification of SXGP, the author’s Genetic Programming Toolkit

5.1.2 Implementation Notes

SXGP is implemented in Java, a language well suited to the development of abstract tools.

Java also offers excellent libraries for image processing, networking and multi-threading.

The cross platform nature of Java makes it particularly suitable for distributing the Genetic

Programming process over a number of CPUs, a feature also implemented in SXGP.

Results by a performance profiler reveals a significant amount of computational time ex-

pended by the genetic programming process is actually devoted to the copying of individuals,

which is necessary to ensure that offspring are separate instances from their parents6. Al-

though the author originally used a flexible copying operator which serialises an object into a

stream and then re-instantiates it as a new instance, this was found to be a significant bottle-

neck. Instead each object implements its own cloning method which permits the process to

6Otherwise the later actions of genetic operators on parents would also affect the offspring

80

proceed much more quickly, while maintaining the requirement to perform “deep cloning”7.

5.1.3 Novel Features

SXGP comprises a number of features that are novel. These include:

Strong-er Typing Depending on the function set used and the maximum tree size permit-

ted, the program search space can be very large. While the essential purpose of any genetic

algorithm is to discover good solutions to a problem without resorting to an exhaustive eva-

luation of the search space, it is also desirable to ensure the search space itself is as small as

possible.

One way of reducing the program space is through the use of strong-typing, where the tree

builder, which is responsible for constructing the programs (and new mutations), is constrai-

ned to connect only nodes which make semantic sense. For instance, the LessThan operator,

which returns a boolean value, should not be supplied as an argument to the division operator

- execution could lead to divide-by-zero errors and a rather inconsistent logic. Although Koza

developed a clunky solution to this problem, Montana[50] implemented a means of strong

typing to GP toolkits by introducing the notion of a return type, which would have to be

matched according to each node’s argument types, as is the case in the strongly-typed pro-

gramming languages. As an example the add operator, should insist that both its arguments

have an numeric return type; the operator itself will also return a numeric value.

However, Montana’s types, such as as numeric, or boolean have the disadvantage of being

too prescriptive. If one is looking for a count for a loop, for instance, a floating point number

is not necessarily appropriate — it is better to involve an integer. However, if one defines

“integer” as a new type to accommodate this, then the arithmetic operators would no longer

accept it, since it cannot be both numeric and an integer. Essentially a node should be able to

return more than one type, for instance to say that it returns a number that is also an integer:

indicating a hierachy of inheritance among different types. SXGP includes this flexibility,

where each node may implement multiple return types. This permits the system to make use

of more complex structures while making fewer trees that don’t make semantic sense.

7Deep cloning refers to copying both an instance and all of its class members; shallow cloning will clone the

instance, but will not copy class members

81

Tree Checking The author’s stronger-typing framework extends further. Although GP is

capable of evolving many means of procrastination, the stronger-typing approach still permits

the creation of “useless” code that performs no function. Code may be considered useless if

it is never executed, or if it always returns the same value regardless of input. The former is

usually to be found in branches of if-statements whose condition is accidentally a constant.

The tree builder in the author’s GP toolkit generally avoids creating such code by follo-

wing additional criteria, imposed by the function nodes themselves. For instance comparative

nodes (lessThan, moreThan, between, equals) additionally insist that at least one of the child

nodes in the subtree beneath each be some kind of image feature (a separate sub-type, based

on the numeric type). This ensures that every sub-tree has the potential to perform some

useful processing8. This further reduces the size of the search space.

The system also discards those programs that do not make use of features at all. GP

programs, if left unchecked, may take advantage of the a priori probabilities of solutions and

simply return the most popular!

Automatic Optimisation The author’s GP system automatically optimizes the best indivi-

dual at the end of evolution, in order to make it more suitable for deployment in the computer

vision task for which efficiency is always a criterion. After running the individual on a set of

training data, the system collects statistics about each node, then removes nodes that are

never used and replaces nodes that always return the same value with constants.

Instant Deployment Solutions evolved by SXGP can be deployed for use in other applica-

tions immediately, in two modes:

GP Tree The GP tree is used as-is, so the program can be used immediately. Since the tree is

executed in an interpreted manner, the program will not run as efficiently as possible.

Compiled Java The GP tree is converted into Java code, then compiled automatically. This

kind of program will run significantly faster, but requires the Java process to be restarted

or the use of class loaders in order to load the newly compiled code.

8Although it is still not perfect: the lessThan function could compare a feature whose return values are in the

range 0-255 to a value of 1000, which would again always return the same value. However, SXGP’s automatic

optimisation mechanism will remove this kind of code.

82

Live Evaluation As well as providing a full-featured graphical interface to display the status

of the evolutionary system, the performance of the current best GP program on seen and

unseen images can be evaluated live by the user during evolution. This enables the user to

assess how well the evolved solution is working and generalising, and provides an insight

into how difficult a feat of image processing is: the user may subsequently tailor the training

set to incorporate characteristics that apparently were not emphasised sufficiently in initial

training set.

5.1.4 Parameter Choices for a Generic System

One can think of a genetic programming system as a whole “world” in which the birth, life and

death of thousands of individuals are simulated by a series of sub-components. As such, one

of the problems of developing solutions with GP is the sheer number of parameters required

by each component: there are parameters for the minimum and maximum initial depth of

individuals, the kind of tree builder to use, the population size, the number of generations,

choice of fitness function, and so on. Moreover, it is difficult to assess the true effect of

any parameter since all the components are rather inter-related. The work published by

other researchers indicates that parameter tuning and experimentation is often called for,

which doesn’t bode well for a supposedly generic problem solver. In order to maintain the

aspiration of a generic system, it is necessary to consider the research and theory behind

different parameter choices in order to establish a set of parameters that work well on a wide

range of problems. Some of these are discussed below.

Genetic Operators A standard breeding pipeline involving crossover, mutation and repro-

duction operators is used in SXGP. The optimal “blend” of the learning operators crossover

and mutation is something not all researchers agree on. Koza himself used no mutation,

preferring a 100% crossover pipeline. Other researchers[63] have shown that genetic pro-

gramming can proceed without using crossover at all, instead by using 100% mutation9 Work

by [64] shows that different blends of each of these operators do not make a substantive

difference to the outcome. Although crossover and mutation work in different ways, their

purpose is similar: to explore the ways in which useful trees can be improved.

9The author’s own toolkit, SXGP, for several months featured a silent bug in which crossover did not function

at all. The problem was only noticed later — the bug had had little apparent effect on the results by GP, much to

the embarassment of the author.

83

Given these results, the author used a reasonably “standard” set of values, making use

of both operators, in which crossover produces about 75% of the new population; mutation

20%; the remainder obtained simply by replication. Making use of both operators is de-

sirable, at least from a theoretical point of view, since each has its own specific advantages.

Crossover helps to exchange useful building blocks between good parents, while mutation can

re-introduce subtrees that might otherwise fall out of the population and thus helps maintain

diversity.

Tournament Size Genetic Programming is distinguished from random search by its bias

toward more performant individuals, which is achieved through the evaluation of individuals’

performance (see Section 5.2) and subsequent selection of “good” individuals to produce

next generation. The most widely used selection technique, tournament selection, selects t

individuals from the population to form a tournament, then selects the individual with the

best fitness score. Larger tournament sizes t will increase the selective pressure, albeit at the

expense of variability. Other selection methods were discussed on page 38.

Although the genetic algorithm community has traditionally used a tournament size t = 2

which preserves as much diversity as possible within the population, while maintaining some

degree of selective pressure, GP researchers generally use t = 7 as this is thought to instill

higher selective pressure on the population, tending to improve the learning rate during the

limited time of a GP run 10. The author has conducted a number of comparative experi-

ments using a variety of different tournament sizes, the result of which is that no significant

difference could be detected in training accuracy, evolution time or average population size.

Neither was observed that the performance of runs with different tournament sizes was any

more variable for different values of t. As it is difficult to decide exactly which is the best para-

meter, one of the author’s classification schemes errs on the safe side by using different sizes

for different runs, and in general SXGP uses the more obvious compromise: a tournament

size of t = 5.

Population Size The computational expense of an evolutionary run is usually proportional

to the product of two parameters which specify the breadth and length of the search: namely

the population size and generation count. Populations are used by evolutionary learning

algorithms to store a diverse base of knowledge that can be built upon. Although the degree

of selectivity employed has a significant effect on the variability within a population, such
10GA is potentially faster to run than GP, so can be indulged in evaluating more generations

84

variability can only be stored within a population of solutions of sufficient size. While there

is clearly a lower bound for the population size, there is no practical upper bound, since the

search space is potentially enormous.

An impression of the size of the search space can be attained through a brief example.

If one imagines a GP system which uses n functions each of arity 211, a single feature, and

maximum tree depth d, using a full tree builder (see Page 35), the search space, or number

of potential programs is:

size = f




d−1∑

i=0

2i




From the exponential nature of this calculation, it can be seen that modest increases in

the number of functions or the tree depth will quickly yield spectacularly large search spaces.

The addition of continuous random constants can increase the size of the search space to

infinite size, which in any case is such that the GP system will never be able to explore it

comprehensively. Given that the population size can only ever be a tiny fraction of the size

of the search space, its choice might be considered relatively arbitrary: it doesn’t appear

necessary to tune for individual problems. Many GP researchers settle on a population size of

500. Nonetheless, the use of the ramped-half-and-half tree builder (see Page 35), introduces

a significant level of duplication into the population (for reasons explained later), which is

alleviated in SXGP using fitness caching (see 6.5).

Beyond the duplicates in Generation 0, genetic populations have a tendency to become

dominated by a particular solution, a phenomenon described as premature convergence. Va-

rious “convergence manipulation” protocols exist to avoid the homogenisation of a popula-

tion, including island selection, which was discussed on Page 47, but each introduce extra

parameters to the system. [65] suggested the use of a different tournament selection algo-

rithm which would repel individuals which shared a similar ancestry. The algorithm starts

by selecting an individual at random12, then searching for an appropriate partner to parti-

cipate in crossover in a “repulsion tournament”13. The partner chosen is the one with the

least shared ancestors with the first individual. Thus the crossover operator is forced to conti-

11The number of arguments taken by the function
12This is the protocol by Murphy and Ryan, in SXGP it starts by selecting an individual using tournament

selection as normal, which seems to be rather more sensible
13Although the author feels the term “hereditary repulsion” is something of a missed opportunity; “Incest police”

is rather more enjoyable terminology.

85

nue exploring previously uncharted areas of the search space, while ensuring the population

maintains a higher degree of diversity. Hereditary Repulsion is integrated into SXGP.

5.1.5 Performance Considerations

The nature of evolutionary learning systems is to produce a lot of solutions then throw the

majority of them away. Although this process is key to learning by simulated natural selection,

it is also inherently wasteful. As a stochastic process, it is usually wise to run the Genetic

learning system several times in order to estimate the true performance, which introduces

further computational expense. Although the programs evolved are often very concise, the

computational expense of learning by GP, especially on computer vision problems, is always

a concern — and possibly one of the reasons members of the computer vision community do

not often use GP! By contrast, techniques such as XCS[66] aim to evolve and improve a single

system through less blunt reinforcement and thus may converge upon a solution more quickly.

The nature of the genetic operators themselves is also of concern. The process of crossover,

by which new combinations are found, can become more destructive than constructive. In

nature, the chance happening of mutation is lethal to the individual in almost all cases 14. In

GP, however, mutation rates are much higher than would be the case in the natural world.

Although GP will always be more processor intensive than other techniques, there are

ways in which one can preserve the learning capabilities of GP while significantly reducing

the time required to evaluate a given number of individuals. In this section we shall briefly

discuss two ways of doing so.

Bloat Control

A common issue in GP is the presence of useless code segments in individuals, known as

‘code bloat,’ that reduce the efficiency of the learning process. Indeed, one might argue that

individuals that are padded out with unused, and thus expendable, pieces of code are more

likely to survive the processes of crossover and mutation intact: there is a selective pressure

which encourages the proliferation of code bloat.

However, the tendency to embelish programs with useless code reduces the efficiency of

the evolutionary process, as it becomes increasingly less likely that the GP operators will have

any noticeable effect at all – to the extent that the process of learning effectively ceases. In

the author’s experience, limiting the size of programs will often increase the rate of learning.

14Fortunately mutation is also a very rare occurrence

86

Figure 5.1: Comparison between best-of-run program sizes at 50 generations between SXGP

and ECJ

Various techniques are used to reduce bloat, including parsimony pressure and dynamic

maximum tree depth [67], which penalise or remove large individuals respectively. However,

for a generic system, it is difficult to quantify what is “large”, so an alternative solution was

employed. Elitism, a commonly used technique which copies the best individuals in the popu-

lation directly into the next generation, was used as studies have shown that evolution with

elitism enabled has smaller average population sizes [32]. This may be because the direct

copying into the next generation removes the selective pressure that encourages individuals

to protect themselves with unused code.

SXGP’s tournament selection mechanism will also choose smaller individuals in the case

that two identically fit programs are competing for the same tournament. The tree checking

and strong-er typing functions also prevent bloat code from becoming prevalent. Since SXGP

does not allow many forms of inactive code, additional trees that have a negative effect on

the individual’s ability are quickly eliminated.

The effect of these additions can be seen in Figure 5.1, which compares the size of best-

of-run programs for both SXGP and ECJ following an evolutionary run of 50 generations.

Although the max-tree-depth parameter was set to the same value in both toolkits (all other

parameters were similarly matched), ECJ tends to produce significantly larger individuals

than does SXGP15, whose best of run programs are generally a third of the size of ECJ pro-

grams. Consequentially, executing 500 individuals over the course of 50 generations takes

about three times longer in ECJ.

15Although the SXGP equivalent is generally slightly fitter

87

5.2 The Evaluation of Fitness

Essential to any system which learns through a process of artificial selection is the “fitness”

function that quantifies the performance of an individual, permitting direct comparisons to

be made between individuals. Individuals which make fewer mistakes or otherwise perform

well are assigned a lower fitness value16.

There are various aspects of performance that one may wish to take into account during

the calculation of fitness, in order that each be maximised as far as possible. Examples include

as the efficiency of the individual, its ability to generalise, or its usage of as much information

as possible. It may also be the case that some of these requirements are based on context, or

even change dynamically during the course of the evolutionary process.

The most straightforward fitness function is defined as follows. Given a set of classes C =

{c1, ..., cn} and a set of samples {(x1, y1, w1), ..., (xn, yn, wn)}, with each sample comprising a

feature vector x ∈ X, the correct class y ∈ C, and a corresponding weight w = 1 . The fitness

of function f : X → C may be calculated as:

fitness1 =
N∑

i=1

wi[f(xi) 6= yi)]

In other words, fitness1 sums the weights of samples mistakenly classified. In the au-

thor’s experience this kind of fitness function performs well, in spite of its apparent simplicity.

Since the function is calculated using only one measure, it is possible that a number of clas-

sifiers may be assigned identical fitness; in which case the tournament selector, when faced

with two or more equally fit individuals, will choose the smallest. The training data error is

thus the overriding factor in determining an individual’s fitness: other desirable features are

secondary. The author’s experience is that the addition of other factors to the fitness function

invariably harm its eventual accuracy.

5.2.1 Fitness for Detection Problems

Nonetheless, some problems do demand slightly more complex fitness functions which permit

certain adjustments to be made, usually relating to the relative cost of making different kinds

of mistake. A classifier can generally make two types of mistake: either a false positive, where

16In this sense “fitness function” is something of a misnomer: error function is more accurate. Measuring

mistakes is easier, because an error value of zero signals to the GP system that an ideal solution has been found,

prompting it to end the evolutionary process

88

a sample from another class is incorrectly identified as the class in question, or a false negative,

where a genuine sample from the class in question is not identified as such. In some cases,

notably medical diagnosis or credit management, the cost associated of each kind of mistake

is different. When diagnosing disease the false positive may be alarming to the patient but

is substantially less costly than the false negative, which can leave a person unaware of a

potentially serious health problem which, upon its eventual discovery, would no doubt leave

the medical establishment facing a substantial claim.

In machine vision, the relative costliness of different mistakes is dependent upon the

domain domain. In many of the categorisation problems, such as digit recognition, it is

difficult to establish which mistakes are more costly than others. Other tasks, especially those

involving binary detection are different: it may be necessary to decide whether to evolve a

highly sensitive classifier that doesn’t make many false negatives, or a more efficient classifier

that does miss out some outliers. In face detection, for instance, there are many more non-

face objects than there are face objects, so it is beneficial to take the relative occurrence of

each class into account in the fitness function.

The relative importance of different mistakes can be encoded by introducing extra coeffi-

cients into the fitness function, often as a ratio between α and β. An example used by other

GP researchers[29] is shown below:

fitness2 =
αTP

totalTP + βFP

The calculation of fitness2 uses TP , the total weight of correctly identified true samples,

totalTP , the total weight of positive training samples and FP , the total number of false

positives. Oddly, this formula calculates αTP/totalTP as a percentage, but also adds FP to

the denominator meaning that the affect of α relative to β is dependent on the total number

of false samples totalFP . It occurs to the author that the following calculation makes more

sense:

fitness3 = α
FN

totalFN
+ β

FP

totalFP

In fitness3 the fitness is composed of two parts, the first relating to the total weight of

false negatives and the second relating to the total weight of false positives. The relative

importance of each kind of mistake is encoded using an appropriate α : β ratio. Still, in the

author’s opinion, the ideal way to tackle the problem is not to introduce an extra parameter

into the data, but instead to use a training set whose samples and relative class sizes closely

89

match the case in the real world.

5.2.2 Even Class Allocation

A consequence of evaluating performance entirely using a fitness value is that the GP system

will become prone to falling into fitness minima. These minima can be most pronounced

in situations where some classes are more prevalent than others. In these cases high fitness

values do not necesarrily correspond to effective classifiers. For instance, faces account for

only 2% of the CBCL face training set, reflecting that there are many more non faces in the

world than faces. Nonetheless, the classifier could evolve a solution with accuracy exceeding

98% simply by returning false for everything. One way to approach this problem is either to

allocate the same number of samples to each class, or to weight each sample such that each

class has the same total influence.

5.2.3 Sample Weighting

Having considered the relative importances of different kinds of mistake, and whether one

may wish to weight samples collectively, it is also worth considering whether individual

samples should be allocated different weights according to their difficulty, since some samples

will be easier to classify than others. By weighting the samples that appear more difficult (that

are misclassified most often), it may be possible to improve performance of the classifier, or

at least ensure that the system does not become mired in local minima.

A useful benchmark when considering this sort of approach is AdaBoost[58]. Adaboost

is a meta learning algorithm which develops classifier ensembles over the course of several

learning sessions. The weights associated with different training data samples are adjusted to

influence the learning system to solve more difficult training data.

The algorithm works by calculating the error of the last learned classifier. The error

consists of the sum of weights of each sample, so a classifier receives credit according to

the importance of the samples it classifies correctly, rather than the number of correct classi-

fications.

After the error is calculated the distributions are updated such that unsolved samples

maintain their weight while solved samples have their weight reduced in proportion to how

well the classifier solved the sample set as a whole. This process is repeated T times or until

a further useful classifier cannot be found.

90

After training is complete, a strong classifier is constructed from the set of weak classi-

fiers using their associated error values which give some indication of the confidence in the

classifier. Every time a weak classifier returns a label, a value associated with that label is

incremented by the confidence factor, with the label with the highest overall confidence level

being returned.

Adaboost depends on a number of learning sessions, and as a result makes the search for

the ensemble classifier much slower.

The author considered a different method, by which the difficulty of each item of trai-

ning data be assessed at the end of every generation with its weight adjusted accordingly.

Regretfully this strategy failed miserably.

5.2.4 Encouraging Generalisation Ability

The fitness functions thus far have concentrated on the classifier’s error on a given training

set. However, a common problem in non-parametric classification is overfitting, where a

classifier learns the behaviour of a specific set of data set so well that its ability to work on

novel data is compromised. It is desirable, therefore, to evolve classifiers that can learn to

generalise. As has been shown elsewhere in this thesis (57) different techniques may produce

a lower fitness score on training data, but nonetheless outperform the fitter classifier on test

data. Given a set of individuals evolved by a learning function, choosing the best of them

according to training data error alone is therefore somewhat insufficient.

The usual solution is to reserve a portion of the training set for the purpose of validating

the classifier; the performance on the validation set gives a better indication of the classifier’s

ability to generalise. Of course, once the validation set has been used for this purpose it

is no longer an unbiased estimator of performance, so a completely unseen test set is also

employed to make the final assessment of a classifier’s capability.

Training Set Splitting Of course, the use of a validation set takes away a proportion of

samples from the training set that would otherwise be used for training, which itself may

have an effect on the generalisation ability of the classifier.

The author devised an alternative method, intended to gain information about the classi-

fier’s generalisation ability without sacrificing any data, and without resorting to computatio-

nally costly methods such as cross validation or jackknifing.

The technique involved splitting the training data into two sets, which are evaluated se-

91

parately. The classifier was evaluated on each set, with the sum of errors yielding the training

fitness before. To the error, the difference between the two sets is also added, thus imposing a

fitness pressure toward consistency. However, it was not possible to detect a significant impro-

vement; indeed this algorithm sometimes worsened the performance of the classifier both on

training and test datasets, perhaps reflecting that the two sub datasets could not necessarily

be compared directly. This experiment reveals once more the perils of tinkering with fitness

functions.

The Validation Dataset Discarding the author’s penchant for experimentation for one mo-

ment, the conventional way to use validation sets is to leave them untouched until the evolu-

tion process has completed, then to use them as estimators of the classifier’s performance on

unseen data. This allows the generalisation capability of the classifier to be assessed without

affecting the delicate fitness function. As GP evolution sessions typically involve producing a

number individuals during the course of several runs17, their performance on validation data,

as opposed to their training fitness, can be used to select the most promising individual. A

similar process can be used when trying out classifiers produced by classifier fusion.

One significant advantage of using validation data in this way is that the GP evolution

time is shortened, since the training set is reduced in size. The proportion of data to use

for validation sets poses a dilemma: choosing too high a proportion may make the training

set too small, while choosing too low a proportion may make the validation set unreliable.

However, the results from the authors experiments with validation results did not reveal any

significant advantage of using validation sets.

5.3 Comparisons

Having discussed the GP toolkit in more detail, we now move onto some empirical compari-

sons, using the datasets summarised on Page 1.

5.3.1 Dataset Interface

Of the selection of 11 datasets used throughout this thesis, four include their own test set

permitting validation on unseen test data, which provides an indication of a given classifier’s
17This is done to avoid the effects of initial populations. The GP environment should always converge on an

equally fit solution given enough time, but undertaking multiple runs is the most reliable way to ensure that a

particular result is representative

92

ability to generalise. The rest are validated using 10 fold cross validation, a standard tech-

nique for measuring error. Cross validation is usually performed by splitting the dataset into

10 sub-sets, from which one is chosen as a test set, with the rest used for training. The lear-

ning process is invoked for every test/training combination, so the overall training error can

be averaged, and the test error estimated. The author’s implementation of k-fold cross vali-

dation uses a stratified selection policy to generate the folds, which ensures that the relative

class distributions within each sub-set are kept as similar to that of the main set as possible.

Some benchmarks, such as the Vehicle dataset, define the folds explicitly; these types are also

supported. The author’s interface permits each type of dataset to be delivered to the classifi-

cation system, whether it be one of the public training datasets, or a dataset generated from

images.

5.3.2 Comparing with ECJ

Before going on to evaluate SXGP in a more general sense, it is necessary to compare it to a

benchmark GP implementation. For this comparison, the popular ECJ toolkit[6] was chosen,

which at time of writing was available in its 18th version. Like the author’s own toolkit,

ECJ is implemented in Java so comparisons in terms of performance are meaningful. ECJ’s

default implementation is, as far as possible, based on Koza’s original specification, making it

a suitable benchmark. Finally, and despite a rather complex architecture, ECJ is surprisingly

efficient — so much so that this author had to expend some considerable time on optimising

his own toolkit first!

Here, each toolkit is run on the same problems involving the classification of data. In

order to make the comparison as meaningful as possible, most of the novel features in SXGP

were deactivated such that the two toolkits could compete on an equal footing. As far as

possible, equivalent classification problems were coded using each toolkit.

20 classifiers were evolved by each toolkit over the course of 20 runs, each lasting for 50

generations. The average test fitness of these classifiers on a series of datasets is presented

in Table 5.2. The results are illustrated graphically in Figure 5.2. The difference between

classifiers, and the results of an independent samples T test are also shown. The results show

that SXGP is able to compete very effectively with ECJ: SXGP produces the better classifiers

on every occasion where the difference between classifiers’ average fitness is significant.

It is interesting to question why ECJ’s performance is not more equivalent with SXGP,

given the similarity of the problem implementations and otherwise identical parameters. One

93

Dataset ECJ SXGP Better Significance

BUPA 0.394 ± 0.024 0.376 ± 0.026 SXGP, 4.5% Very Significant

GLASS 0.429 ± 0.023 0.417 ± 0.031 – Not Significant

HEART 0.241 ± 0.019 0.223 ± 0.018 SXGP, 7.5% Very Significant

IONOSPHERE 0.120 ± 0.015 0.101 ± 0.014 SXGP, 15.8% Extremely Significant

IRIS 0.109 ± 0.030 0.054 ± 0.013 SXGP, 50.5% Extremely Significant

PENDIG 0.408 ± 0.032 0.405 ± 0.026 – Not Significant

PIMA 0.257 ± 0.008 0.247 ± 0.008 SXGP, 3.9% Very Significant

SATIMAGE 0.245 ± 0.027 0.252 ± 0.023 – Not Significant

THYROID 0.029 ± 0.008 0.023 ± 0.003 SXGP, 14.8% Very Significant

VEHICLE 0.394 ± 0.014 0.395 ± 0.017 – Not Significant

WDBC 0.057 ± 0.008 0.041 ± 0.005 SXGP, 50.5% Extremely Significant

Table 5.2: Toolkit Comparison: SXGP Vs ECJ v18 on various datasets. Averages from 20

runs, ± value indicates the standard deviation

Figure 5.2: Comparison between best-of-run program test errors after 50 generations between

SXGP and ECJ

94

answer may be found in the average program size of individuals evolved by ECJ and SXGP

respectively, already presented in Figure 5.1, which shows that ECJ produces substantially

larger individuals most of the time. Since SXGP can achieve equivalent or better solutions

with substantially smaller individuals, it is fair to say that the additional size is a result of

bloat, as opposed to useful code. As well as reducing the efficiency of GP learning, bloat can

prevent learning from taking place, by turning the GP system into an automatic means of

swapping useless code fragments.

These results suggest that the author’s toolkit is comparable to a standard and widely used

Genetic Programming toolkit, which has been under continuous development for the best part

of a decade18. This experiment justifies the author’s decision to use SXGP exclusively as the

GP toolkit in this thesis.

5.3.3 Comparing to other GP Results

In the second process of validation, the author’s GP Toolkit was compared to published results

obtained by other GP researchers in order to establish whether the SXGP classifier is competi-

tive with the state of the art in Genetic Programming in a more general sense. SXGP was put

to work on certain public datasets, for which figures had already been published by other GP

researchers. The results of the experiment are presented in Table 5.3.

The results in Table 5.3 show that the author’s Genetic Programming toolkit consistenly

produces classifiers that are very competitive with other published results, although as usual

there is no single best technique for every dataset. The author’s work is based most closely

upon the work by Loveard [68]; it can be seen that the author’s toolkit delivers significantly

improved results over the work published by Loveard.

5.3.4 Comparing to other Classification Techniques

In this final comparison, the author’s toolkit is compared to other techniques from outside the

Genetic Programming community in order to establish the extent to which evolved classifiers

are competitive with human-written learning algorithms. The comparisons are performed

once again using publicly available datasets. This has already been done in the past: a pre-

vious study by Lim [71] compared 33 different classification algorithms on a series of public

datasets. Equivalent results using Genetic Programming were later added by [68]. With

18This particular comparison is valid only for problems of this type, using GP: ECJ does support considerably

more evolutionary learning paradigms than does SXGP

95

Data Set sXGP Loveard[68] Chien [69] Bot[51] Muni[47] [70]

BUPA 71.3* ± 1.6 69.2 ± 1.6 -

Heart 84.8* ± 1.7 -

Glass 67.3* ± 2.0 58.9 ± 11.4 -

Ionosphere 95.7* ± 0.8 92.8 ± 2.3 90.2 ± 5.5 -

Iris 99.4* ± 0.1 95.3 ± 1.0 98.7 ± 0.0

Pen-Digits 92.0* ± 2.3 - 83.1

Pima 76.5* ± 0.8 75.8 ± 0.8 -

SatImage 87.8* ± 0.5 80.7 ± 1.3 - 81.4

Thyroid 98.9* ± 0.3 97.6 ± 0.2 -

Vehicle 73.0 ± 3.1 62.4 ± 2.9 75.3* ± 2.4 61.8 ± 0.1

WDBC 97.1 ± 0.1 96.4 ± 0.2 - 97.2* ± 0.0

Table 5.3: Results Compared to Those Published by Other GP Researchers

the algorithms compared in rank order, one particular GP representation (DRS, discussed in

Chapter 4) was found to be reasonably competitive with the 33 other techniques at solving

binary problems (ranking as high as fourth), but in general the GP programs’ rankings were

mediocre.

The study by Lim was dominated by a number of decision tree algorithms; the results

here also include comparisons to other, more recent classifiers. The algorithms compared

here include Support Vector Machines (SVM), Multilayer Perceptron Neural Networks (MLP),

the C4.5 Decision Tree Algorithm, and various implementations of k-Nearest-Neighbour algo-

rithm (kNN). The results of this comparison on test data are presented in Table 5.4.

As well as confirming the phenomenon that there is no such thing as a best classifier that

consistently outperforms other algorithms, the results show that SXGP is competitive with a

range of other techniques from outside the realm of evolutionary computation on a series

of different problems. It should be noted that the same GP implementation with identical

parameters was used to derive all of the SXGP results.

The Vehicle Dataset, in which silhouettes of four different vehicle types must be establi-

shed, is difficult to solve. This is not to say that the problem itself is intractable — our eyes

96

Data Set SXGP SVM MLP C4.5 kNN

BUPA 71.3 76.1 73.1 68.1 64.9

Heart 84.8 87.4 82.0 78.9 83.8

Glass 67.3 68.6 75.2 68.2 72.0

Ionosphere 95.7 93.2 96.0 94.9 98.7

Iris 98.0 98.0 96.0 95.3 95.7

Pen-Digits 92.0 97.5 93.4 96.6 -

Pima 76.5 77.2 76.4 73.0 76.7

SatImage 87.7 88.4 91.0 86.3 90.9

Thyroid 98.9 96.1 99.3 92.6 97.9

Vehicle 70.9 79.0 79.3 73.4 72.8

WDBC 97.1 97.2 96.7 94.7 97.1

Average 85.5 87.1 87.1 83.8 85.5

Table 5.4: SXGP versus Other Techniques on 11 Public Datasets

can differentiate all kinds of silhouettes accurately. Rather it is the limitations in the attributes

chosen to describe each silhouette that make the problem difficult since a certain amount of

important information is lost. Many of the UCI datasets were constructed from a finite set

of measurements taken during the course of manual experimentation. However a computer

can take literally thousands of measurements from a given image without very little effort,

leaving one spoiled for choice. It is difficult to decide which attributes would aid accurate

classification and which would be irrelevant. In fact, irrelevant attributes may actually de-

crease the performance some classification algorithms, such as kNN. Different feature sets

which may facilitate classification will be investigated in Chapter 6.

5.4 A Discussion

Before moving onto the vision aspects of this thesis, the author shall complete this Chapter

with a short discussion of classification in general.

The many classification algorithms can ordinarily be split into two groups: parametric

97

and non parametric. The parametric methods generally aim to identify a set of coefficients,

one for each variable, that express a combination of features whose output Y can predict

a certain event. Techniques such as Fisher’s Linear Discriminant[REF] estimate the values

of these coefficients using the least squares technique. Since Y is considered a probability,

its value can be combined with prior probabilities using Baye’s theorem to obtain an answer

that takes into account the relative abundances of different classes. Although the disciminant

methods are intuitive, like all statistical techniques they are reliant upon on a number of rigid

assumptions, such as feature independence, normal distributions or homoscedasticity, which

rarely hold true for real world data.

A more pressing problem is that this kind of approach cannot accurately model non linear

relationships in data. The so-called Generalised Linear Model[REF] is an extension which

permits models to work with non-normally distributed data distributions, particularly those

with an exponential distribution, using some form of link function. Of these, Logistic Regres-

sion, which also places fewer assumptions on the data, is one of the most extensively used

techniques for parametric classification.

The advantage of the non-parametric methods is that they do not place arbitrary restric-

tions on data as they are generally not based on statistical theory. They usually require more

training data in order to produce accurate solutions and often take longer to train than do

the simpler statistical methods.

One popular family of non-parametric techniques are the recursive partitioning algo-

rithms, or decision-tree algorithms, of which the most well known is probably Quinlan’s

C4.5[REF]. The objective of the decision tree algorithms is to recursively split the dataset

into two or more increasingly homogenous subgroups in order to improve the classification

of a target variable. Various techniques exist to choose the point at which the data is split,

but the general idea is that the root node is split by the variable that best divides the training

data and so on.

Although decision tree algorithms generally exhibit good performance as classifiers, and

have the advantage of easy interpretation, they also suffer from two drawbacks. The first,

more theoretical, drawback is that generally the splits can only be performed orthogonally

with respect to the features, so the regions in space cut out by decision tree algorithms are

hyper-rectangles. The algorithm may perform badly if the decision planes are actually dia-

gonal. The second problem is that they are prone to over fitting, which occurs naturally if

the splitting process is permitted to continue unchecked, although post processing “pruning”

98

techniques generally alleviate this problem.

The most significant advantage of the non-parametric techniques is that they can develop

arbitrarily complex models and thus are likely to outperform parametric statistical techniques,

provided they do not over fit the data. Parametric techniques, which are usually fast to

execute may be useful when deciding which variables are important and which are irrelevant.

The k Nearest Neighbour algorithm is another non-parametric technique and an example

of instance-based learning. Novel feature vectors are compared to a database of the training

data each according to some distance function, usually the Mahalanobis distance (which

has the advantage of scale invariance). The most common class among the k nearest of its

“neighbours” is chosen as the appropriate label. As such, the training procedure is trivial,

although the classification stage, to which the computational effort is deferred, can be slow

when for large datasets, in addition to its large storage requirement. The choice of k is also

difficult to ascertain in a principled way, although in general small values where k >1 make

the algorithm more robust, while the choice of k=1 is generally best for the smallest datasets

(N < 100).

Neural networks are also often employed in classification. While Rosenblatt’s[REF] classic

single-layer perceptron shares much in common with a basic linear regression approach, the

neural networks generally used for classification are multi-layer perceptrons[REF], which are

capable of learning complex non linear relationships between data, due to the usually non-

linear activation functions working within each neuron.

A problem with neural networks in general is that the choice of network topology has a

significant impact on the viability of the network after it has been trained. The hidden layer,

if too small, may render the network incapable of suitable approximation; if too large the net

also becomes prone to over fitting. Irrelevant features can be a danger for neural networks,

as they making the back propagation learning process significantly slower.

A closely related approach to neural networks are Support Vector Machines (SVMs), one

of the newest non-parametric supervised learning techniques. Like discriminant analysis,

SVMs aim to locate some form of decision plane that divides clusters of data, but SVMs are

non linear and also aim to maximise the margin between the plane and the groups’ outliers,

so wherever possible, the plane that provides the largest gap between groups is chosen. This

provably reduces the upper bound on the expected generalisation error.

A significant advantage of SVMs is that the number of features in the training data does

not adversely affect the performance of the completed SVM classifier, since the number of

99

support vectors selected by the algorithm, which define the hyper plane, is usually small. On

the other hand, SVMs are generally unable to classify more than two classes at once, which

calls for some form of binary decomposition, and certain parameter choices can leave the

SVM prone to overfitting its model to training data.

Generally speaking, SVMs and Neural networks tend to perform better when dealing with

high dimensional spaces and continuous features. Categorical data is best dealt with by

the decision tree algorithms. As more sophisticated algorithms, however, both require more

parameters to be set that then other techniques.

Apart from the decision trees, non-parametric methods generally manifest themselves as

“black boxes” since it is difficult to understand how or why they reach a particular decision.

This is a particular disadvantage in areas of business, such as credit scoring, or medicine,

where people are uneasy leaving important decisions to an algorithm they don’t understand,

but is less of a concern when producing vision systems.

Many of the algorithms, both parametric and non-parametric, are in some way dependent

upon the initial random values assigned to certain values, whether it be parametric coeffi-

cients or neuronal weightings. An advantage of the population approach to learning, em-

ployed by both Genetic Algorithms and Genetic Programming, is that the solutions cover a

broader surface of the search space instead of a single point, so initial random choices are less

of an issue. Of course, the population paradigm places an additional computational overhead

so different runs may yet provide different performances if not run long enough.

Although the results in this Chapter show that Genetic Programming is competitive with

state-of-the-art techniques on given problems, perhaps more so than have done previous GP

researchers, the results also correspond with a long line of comparative studies which all state

that there exists no “magic bullet” solution to problems involving classification.

Furthermore, although this discussion draws attention to the pros and cons of each tech-

nique in an analytical sense, these issues do not necessarily manifest themselves in real world

scenarios: A study by Domigos and Pazzani (1997)[REF] found that the naive Baye’s classi-

fier, despite its requirement for feature independence, could sometimes be superior to more

sophisticated algorithms.

Nonetheless the most appropriate course of action is to select the classification technique

which appears most appropriate for the task. Given the kind of vision tasks tackled within this

thesis, there are certain techniques that can be ruled out. Linear discriminant analysis, for

instance, generally requires that the classes have equal numbers of members, which is rarely

100

the case in vision and certainly not in generic vision. kNN places a similar requirement and

like neural networks is regarded as sensitive to noise and irrelevant features, both of which

may be present in images.

Evolutionary techniques are not often mentioned in discussions of classification. Unlike

the above approaches, genetic techniques are particularly bound by any given representation:

GAs can be used to determine neural network weights, or weights for disciminant functions

in place of the least squares technique. GP can readily develop decision trees, and the concept

of a margin can be built into a GP fitness function to offer advantages similar to SVMs. Since

the problem of classification requires different approaches for different tasks, it makes sense

to make use of the most flexible technique in our learning framework. In the following

Chapters we shall see how well equipped is Genetic Programming for developing generic

vision systems.

101

Bibliography

[1] N. Eldredge and S. J. Gould. Models in Paleobiology: Punctuated Equilibria: An Alterna-

tive to Phyletic Gradualism, chapter 5, pages 82–115. Freeman, Cooper and Co, 1972.

[2] Andrew Parker. In the Blink of an Eye. Perseus Publishing, 2003.

[3] Paul Viola and Michael Jones. Robust real-time object detection. International Journal

of Computer Vision, 57(2):137–154, 2004.

[4] John R. Koza. Genetic Programming. MIT Press, 1992.

[5] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley, 1989.

[6] Sean Luke. ECJ: A Java-based evolutionary computation research system v14.

http://cs.gmu.edu/~eclab/projects/ecj/.

[7] F. John Canny. A Computational Approach to Edge Detection. 8(6):679–698, 1986.

[8] E.R. Davies. On the noise suppression and image enhancement characteristics of the

median, truncated median and mode filters. Pattern Recognition Letters, 7:87–97, 1988.

[9] Roongroj Nopsuwanchai and Prabhas Chongstitvatana. Improving robustness of robot

programs generated by genetic programming for dynamic environments. In In Proc. of

Asia-Pasific Conference on Circuits and Systems (APCCAS98, pages 523–526, 1998.

[10] Wei Yan and Christopher D. Clack. Evolving robust gp solutions for hedge fund stock

selection in emerging markets. In GECCO ’07: Proceedings of the 9th annual conference

on Genetic and evolutionary computation, pages 2234–2241, New York, NY, USA, 2007.

ACM.

136

[11] Christopher Harris and Bernard Buxton. Evolving edge detectors with genetic program-

ming. In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L. Riolo, editors,

Genetic Programming 1996: Proceedings of the First Annual Conference, pages 309–315,

Stanford University, CA, USA, 28–31 July 1996. MIT Press.

[12] C.-H. Chao and A. P. Dhawan. Edge detection using Hopfield neural network. In S. K.

Rogers and D. W. Ruck, editors, Proc. SPIE Vol. 2243, p. 242-251, Applications of Artificial

Neural Networks V, Steven K. Rogers; Dennis W. Ruck; Eds., volume 2243 of Presented at

the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, pages 242–251,

March 1994.

[13] Byatia P. Srinivasan V. and S.H. Ong. Edge detection using a neural network. Pattern

Recognition, 27(12):1653–1662, 1994.

[14] S.M. Bhandarkar, Y.Q. Zhang, and W.D. Potter. An edge-detection technique using ge-

netic algorithm-based optimization. Pattern Recognition, 27(9):1159–1180, September

1994.

[15] Christopher Harris and Bernard Buxton. Low-level edge detection using genetic pro-

gramming: performance, specificity and application to real-world signals. Technical

Report RN/97/7, Gower Street, London, WC1E 6BT, UK, 1997.

[16] Mark E. Roberts and Ela Claridge. An artificially evolved vision system for segmenting

skin lesion images. In Randy E. Ellis and Terry M. Peters, editors, Proceedings of the 6th

International Conference on Medical Image Computing and Computer-Assisted Intervention

(MICCAI), volume 2878 of LNCS, pages 655–662, Montreal, Canada, November 2003.

Springer-Verlag.

[17] Riccardo Poli. Genetic programming for image analysis. In John R. Koza, David E.

Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic Programming 1996: Pro-

ceedings of the First Annual Conference, pages 363–368, Stanford University, CA, USA,

28–31 1996. MIT Press.

[18] David G. Lowe. Object recognition from local scale-invariant features. pages 1150–

1157, 1999.

[19] Herbert Bay, Tinne Tuytelaars, and Van Gool. Surf: Speeded up robust features. In 9th

European Conference on Computer Vision, Graz Austria, May 2006.

137

[20] M. Roberts and E. Claridge. Cooperative coevolution of image feature construction and

object detection, 2004.

[21] Jean Serra. Image Analysis and Mathematical Morphology. Academic Press, Inc., Or-

lando, FL, USA, 1983.

[22] Polina K. Spivak. Discovery of optical character recognition algorithms using genetic

programming. In John R. Koza, editor, Genetic Algorithms and Genetic Programming at

Stanford 2002, pages 223–232. Stanford Bookstore, Stanford, California, 94305-3079

USA, June 2002.

[23] David Andre. Automatically defined features: The simultaneous evolution of 2-

dimensional feature detectors and an algorithm for using them. In K. E. Kinnear Jr,

editor, Advances in Genetic Programming. MIT Press, 1994.

[24] Huey et al. Rapid evolution of a geographic cline in size in an introduced fly. Science,

287(5451):308–309, 2000.

[25] Ingo Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien

der biologischen Evolution. PhD thesis, Technical University of Berlin, 1971.

[26] John H. Holland. Adaptation in Natural and Artificial Systems. 1975.

[27] R.A Fisher. The Genetical Theory of Natural Selection. Dover, 1958.

[28] Stewart W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation,

3(2):149–175, 1995.

[29] Simon C. Roberts and Daniel Howard. Evolution of vehicle detectors for infrared li-

nescan imagery. In Riccardo Poli, Hans-Michael Voigt, Stefano Cagnoni, Dave Corne,

George D. Smith, and Terence C. Fogarty, editors, Evolutionary Image Analysis, Signal

Processing and Telecommunications: First European Workshop, EvoIASP’99 and EuroEc-

Tel’99, volume 1596 of LNCS, pages 110–125, Goteborg, Sweden, 28-29 May 1999.

Springer-Verlag.

[30] Ankur Teredesai and Venu Govindaraju. Issues in evolving GP based classifiers for a

pattern recognition task. In Proceedings of the 2004 IEEE Congress on Evolutionary Com-

putation, pages 509–515, Portland, Oregon, 20-23 June 2004. IEEE Press.

138

[31] Alan Piszcz and Terence Soule. Dynamics of evolutionary robustness. In Maarten Keijzer,

Mike Cattolico, Dirk Arnold, Vladan Babovic, Christian Blum, Peter Bosman, Martin V.

Butz, Carlos Coello Coello, Dipankar Dasgupta, Sevan G. Ficici, James Foster, Arturo

Hernandez-Aguirre, Greg Hornby, Hod Lipson, Phil McMinn, Jason Moore, Guenther

Raidl, Franz Rothlauf, Conor Ryan, and Dirk Thierens, editors, GECCO 2006: Procee-

dings of the 8th annual conference on Genetic and evolutionary computation, volume 1,

pages 871–878, Seattle, Washington, USA, 8-12 July 2006. ACM Press.

[32] Riccardo Poli, Nicholas F. McPhee, and Leonardo Vanneschi. Elitism reduces bloat in

genetic programming. In GECCO ’08: Proceedings of the 10th annual conference on

Genetic and evolutionary computation, Atlanta, Georgia, USA, 12-16 July 2008. ACM

Press. forthcoming.

[33] Darrell Whitley. The GENITOR algorithm and selection pressure: Why rank-based al-

location of reproductive trials is best. In J. D. Schaffer, editor, Proceedings of the Third

International Conference on Genetic Algorithms, San Mateo, CA, 1989. Morgan Kaufman.

[34] T. Blickle and L. Thiele. A mathematical analysis of tournament selection, 1995.

[35] Riccardo Poli. Tournament selection, iterated coupon-collection problem, and

backward-chaining evolutionary algorithms. In Alden H. Wright, Michael D. Vose, Ken-

neth A. De Jong, and Lothar M. Schmitt, editors, Foundations of Genetic Algorithms 8,

volume 3469 of Lecture Notes in Computer Science, pages 132–155, Aizu-Wakamatsu

City, Japan, 5-9 January 2005. Springer-Verlag.

[36] Tatsuya Motoki. Calculating the expected loss of diversity of selection schemes. Evol.

Comput., 10(4):397–422, 2002.

[37] P. Riccardo and L. William. Backward-chaining genetic programming, 2005.

[38] Huayang Xie, Mengjie Zhang, and Peter Andreae. Another investigation on tournament

selection: modelling and visualisation. In GECCO ’07: Proceedings of the 9th annual

conference on Genetic and evolutionary computation, pages 1468–1475, New York, NY,

USA, 2007. ACM.

[39] Artem Sokolov and Darrell Whitley. Unbiased tournament selection. In GECCO ’05:

Proceedings of the 2005 conference on Genetic and evolutionary computation, pages 1131–

1138, New York, NY, USA, 2005. ACM.

139

[40] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis,

and first results. TCGA Report No. 89003, 1989.

[41] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Genetic Pro-

gramming – An Introduction; On the Automatic Evolution of Computer Programs and its

Applications. Morgan Kaufmann, San Francisco, CA, USA, January 1998.

[42] Peter Nordin, Frank Francone, and Wolfgang Banzhaf. Explicitly defined introns and

destructive crossover in genetic programming. In Peter J. Angeline and K. E. Kinnear,

Jr., editors, Advances in Genetic Programming 2, chapter 6, pages 111–134. MIT Press,

Cambridge, MA, USA, 1996.

[43] Riccardo Poli and William B. Langdon. On the search properties of different crossover

operators in genetic programming. In John R. Koza, Wolfgang Banzhaf, Kumar Chella-

pilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg,

Hitoshi Iba, and Rick Riolo, editors, Genetic Programming 1998: Proceedings of the Third

Annual Conference, pages 293–301, University of Wisconsin, Madison, Wisconsin, USA,

22-25 July 1998. Morgan Kaufmann.

[44] Walter Alden Tackett. Greedy recombination and genetic search on the space of compu-

ter programs. In L. Darrell Whitley and Michael D. Vose, editors, Foundations of Genetic

Algorithms 3, pages 271–297, Estes Park, Colorado, USA, 31 July–2 August 1994. Mor-

gan Kaufmann. Published 1995.

[45] Kevin J. Lang. Hill climbing beats genetic search on a boolean circuit synthesis of Koza’s.

In Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City,

California, USA, July 1995. Morgan Kaufmann.

[46] Mengjie Zhang, Xiaoying Gao, and Weijun Lou. A new crossover operator in genetic pro-

gramming for object classification. IEEE Transactions on Systems, Man and Cybernetics,

Part B, 37(5):1332–1343, October 2007.

[47] Durga Prasad Muni, Nikhil R Pal, and Jyotirmay Das. A novel approach to design

classifier using genetic programming. IEEE Transactions on Evolutionary Computation,

8(2):183–196, April 2004.

[48] David J.C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge

University Press, 2003.

140

[49] Kenneth Alan De Jong. An analysis of the behavior of a class of genetic adaptive systems.

PhD thesis, Ann Arbor, MI, USA, 1975.

[50] David J. Montana. Strongly typed genetic programming. Technical Report #7866, 10

Moulton Street, Cambridge, MA 02138, USA, 7 1993.

[51] Martijn C. J. Bot and William B. Langdon. Application of genetic programming to in-

duction of linear classification trees. In Riccardo Poli, Wolfgang Banzhaf, William B.

Langdon, Julian F. Miller, Peter Nordin, and Terence C. Fogarty, editors, Genetic Pro-

gramming, Proceedings of EuroGP’2000, volume 1802 of LNCS, pages 247–258, Edin-

burgh, 15-16 April 2000. Springer-Verlag.

[52] Yun Zhang and Mengjie Zhang. A new program structure in genetic programming for

object classification. In David Pairman, Heather North, and Stephen McNeill, editors,

Proceeding of Image and Vision Computing NZ International Conference, pages 459–465,

Akaroa, New Zealand, November 2004. Lincoln, Landcare Research.

[53] Thomas Loveard and Victor Ciesielski. Representing classification problems in gene-

tic programming. In Proceedings of the Congress on Evolutionary Computation, vo-

lume 2, pages 1070–1077, COEX, World Trade Center, 159 Samseong-dong, Gangnam-

gu, Seoul, Korea, 27-30 May 2001. IEEE Press.

[54] Mengjie Zhang, Victor B. Ciesielski, and Peter Andreae. A domain-independent window

approach to multiclass object detection using genetic programming. EURASIP Journal

on Applied Signal Processing, 2003(8):841–859, July 2003. Special Issue on Genetic and

Evolutionary Computation for Signal Processing and Image Analysis.

[55] W. B. Langdon and B. F. Buxton. Genetic programming for combining classifiers. In Lee

Spector, Erik D. Goodman, Annie Wu, W. B. Langdon, Hans-Michael Voigt, Mitsuo Gen,

Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max H. Garzon, and Edmund Burke,

editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-

2001), pages 66–73, San Francisco, California, USA, 7-11 July 2001. Morgan Kaufmann.

[56] Polina K. Spivak. Discovery of optical character recognition algorithms using genetic

programming. In John R. Koza, editor, Genetic Algorithms and Genetic Programming at

Stanford 2002, pages 223–232. Stanford Bookstore, Stanford, California, 94305-3079

USA, June 2002.

141

[57] Will Smart and Mengjie Zhang. Using genetic programming for multiclass classification

by simultaneously solving component binary classification problems. Technical Report

CS-TR-05-1, Computer Science, Victoria University of Wellington, New Zealand, 2005.

[58] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line lear-

ning and an application to boosting. In European Conference on Computational Learning

Theory, pages 23–37, 1995.

[59] Thad Starner, Joshua Weaver, and Alex Pentland. Real-time american sign language

recognition using desk and wearable computer based video. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 20(12):1371–1375, 1998.

[60] D.J. Newman A. Asuncion. UCI machine learning repository, 2007.

[61] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Genetic pro-

gramming: an introduction: on the automatic evolution of computer programs and its

applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

[62] John Koza. Genetic programming, 2007.

[63] Kumar Chellapilla. Evolving computer programs without subtree crossover. IEEE Tran-

sactions on Evolutionary Computation, 1(3):209–216, September 1997.

[64] Sean Luke and Lee Spector. A comparison of crossover and mutation in genetic program-

ming. In John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon,

Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of the

Second Annual Conference, pages 240–248, Stanford University, CA, USA, 13-16 July

1997. Morgan Kaufmann.

[65] Gearoid Murphy and Conor Ryan. A simple powerful constraint for genetic program-

ming. Genetic Programming, Lecture Notes in Computer Science, 4971, 2008.

[66] Stewart W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation,

3(2):149–175, 1995. http://prediction-dynamics.com/.

[67] Sara Silva and Jonas Almeida. Dynamic maximum tree depth. In E. Cantú-Paz, J. A.

Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall,

S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A. Potter, A. C. Schultz, K. Dowsland,

N. Jonoska, and J. Miller, editors, Genetic and Evolutionary Computation – GECCO-2003,

volume 2724 of LNCS, pages 1776–1787, Chicago, 12-16 July 2003. Springer-Verlag.

142

[68] Thomas Loveard and Victor Ciesielski. Representing classification problems in genetic

programming. In Proceedings of the Congress on Evolutionary Computation, volume 2,

pages 1070–1077. IEEE Press, 27-30 May 2001.

[69] Been-Chian Chien, Jui-Hsiang Yang, and Wen-Yang Lin. Generating effective classifiers

with supervised learning of genetic programming. In DaWaK, pages 192–201, 2003.

[70] Gianluigi Folino, Clara Pizzuti, and G. Spezzano. Improving cooperative gp ensemble

with clustering and pruning for pattern classification. In GECCO 2006, pages 791–798,

New York, NY, USA, 2006. ACM.

[71] Wei-yin Loh Tjen-sien Lim. An empirical comparison of decision trees and other classi-

fication methods. Technical report, 1997.

[72] Luc Vincent and Pierre Soille. Watersheds in digital spaces: an efficient algorithm based

on immersion simulations. IEEE Transactions on Pattern Annalysis and Machine Intelli-

gence, 13(6):583–598, 2006.

[73] Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algo-

rithms, 3rd Edition. Boston: Addison-Wesley, 1993.

[74] Fuhui Long Hanchuan Peng and Chris Ding. Feature selection based on mutual infor-

mation: criteria of max-dependency, max-relevance, and min-redundancy. 27(8):1226–

1238, 2005.

[75] Ron Kohavi and George John. Wrappers for feature subset selection. 97(1):273–324,

1997.

[76] Marc Ebner. Evolving color constancy for an artificial retina. In Genetic Programming,

Proceedings of EuroGP’2001, volume 2038 of LNCS, pages 11–22, Lake Como, Italy, 18-

20 April 2001. Springer-Verlag.

[77] E.H. Land. Recent advances in retinex theory and some implications for cortical appli-

cations: Colour vision and the natural image. In Proceedings of the National Academy of

Science, volume 80, pages 5163–5169, 1984.

[78] F. C. Crow. Summed-area tables for texture mapping. 18(3):207–212, July 1984.

143

[79] M. Roberts. The effectiveness of cost-based subtree caching mechanisms in typed genetic

programming for image segmentation. In Applications of Evolutionary Computation,

Proceedings of EvoIASP 2003, Colume 2611 of LNCS, pages 444–454, 7-10 2003.

144

