
Towards the Automatic Construction of Machine Vision
Systems using Genetic Programming

Olly Oechsle

A thesis submitted for the degree of

Doctor of Philosophy

at the

School of Computer Science and Electronic Engineering

University of Essex

May 2009

A Brief Glossary

Abbreviation Description Page

DRS Dynamic Range Selection. A means of representing classifiers. 74

DRS2 Refers to the author’s extension of DRS, which render it free of

parameters.

83

DRS2C Refers to the author’s extension of DRS2, which renders it capable

of returning confidence estimates.

83

ECJ A popular Java-based toolkit for evolutionary computation. 104

ES Evolution Strategies. An early genetic learning technique. 11

FULL A tree builder, used for generating programs in Genetic Program-

ming.

17

GA Genetic Algorithm(s). 13

Genotype The encoding of a solution, which may differ from its eventual

behaviour (phenotype).

13

GLCM Grey-Level Co-occurence Matrix. Summarises spatial relationships

between different pixels, used to calculate texture descriptors.

55

GP Genetic Programming. 13

GROW A tree builder, used for generating programs in Genetic Program-

ming.

16

ICS Intelligent Classification System. The author’s classification fra-

mework.

95

JASMINE An end-user component of the author’s software. Permits users to

generate vision systems.

188

LDA Linear Discriminant Analysis. A long-established statistical tech-

nique that may be used for binary classification.

132

Phenotype The behaviour of a program or individual, which is not always

entirely determined by its genotype.

13

PS Partial Solutions. Another of the author’s classification frame-

works.

92

SXGP The author’s own Genetic Programming toolkit. 104

Abstract

Computer vision is a topic that has interested researchers and commercial organisations alike

for some time: it provides both a considerable intellectual challenge, and a wide variety of

useful applications, some of which are now becoming ubiquitous. In this thesis the author

has studied means by which vision software may be constructed automatically using Genetic

Programming (GP) – a technique that learns how to write programs during a simulation of

Darwinian evolution. This research addresses the question of how one might create more

“complete” vision systems using GP, beyond simply proving the applicability of evolutionary

learning to particular image processing tasks. Research into making Genetic Programming

more suitable for deployment as a generic learning tool is presented, evaluated and asses-

sed, and novel means by which multi-stage vision systems can be constructed from evolved

components is described. The author does not claim to have invented significant new pa-

radigms in either GP or mainstream computer vision – rather the focus is on bridging the

gap between task-specific applications and a generic learning framework. An architecture for

creating such applications is presented, along with software that permits non-expert users to

create vision systems rapidly of a complexity first equal to, then beyond that so-far published

by GP researchers.

i

Acknowledgements

I would like to express my gratitude to a number of people before commencing this docu-

ment. I am particularly grateful to my fiancée Rong Gao for her patient support and kindness,

especially in the last stressful months of preparing a thesis document. It appears that most

doctoral study inevitably deteriorates into mathematics to some degree; I also thank her for

her assistance in those areas.

I am grateful for the support of my supervisor, Dr Adrian Clark, throughout the course

of my study. I trust his assistance to have steered me along the right track, while allowing

me to take the research my own direction and to indulge ideas that have interested me since

childhood. I also gratefully acknowledge the assistance from the EPSRC for making the last

three years financially tolerable!

I dedicate this thesis to my parents, Maggie and Gunther, who invested so much into my

education – a sacrifice that, until now, I’ve never properly thanked them for.

ii

Contents

1 Introduction 1

1.1 The Rise of Machine Vision . 2

1.2 Machine Learning . 3

1.3 Evolved Vision Software . 4

1.4 Challenges . 5

1.5 Contributions . 5

1.6 Thesis Structure . 7

2 An Overview of Genetic Programming 9

2.1 The Inspiration Behind Evolutionary Algorithms 10

2.2 A Very Brief History of Evolutionary Computation 11

2.2.1 Evolutionary Strategies (ES) . 11

2.2.2 Genetic Algorithms (GA) . 13

2.2.3 Genetic Programming (GP) . 13

2.3 Components . 14

2.3.1 The Representation of Individuals . 14

2.3.2 The Creation of Individuals . 16

2.3.3 The Evaluation of an Individual’s Fitness 20

2.3.4 The Selection of Individuals . 25

2.3.5 The Genetic Operators . 30

2.3.6 Generation Gap Methods . 37

2.4 Conclusion . 38

iii

3 A Brief Overview of Computer Vision 39

3.1 Image Acquisition . 40

3.2 Low-Level Vision . 44

3.2.1 Edge Detection . 45

3.2.2 Line Detection . 48

3.2.3 Other Points of Interest . 50

3.3 Segmentation . 51

3.3.1 Applications and Image Features . 54

3.4 Object Detection . 56

3.5 Vision Systems . 63

3.6 Conclusions . 65

4 Classification by Genetic Programming 67

4.1 Representing Classifiers in GP . 68

4.1.1 Evolving Decision Trees . 69

4.1.2 f(X) Representations . 70

4.1.3 Binary Decomposition . 72

4.1.4 One Individual, Multiple Trees . 73

4.1.5 Modi Program Structure . 73

4.1.6 Range Selection . 74

4.1.7 Computer Vision Inspired Techniques 76

4.1.8 Choosing a Representation . 78

4.2 Investigating Range Selection . 80

4.2.1 DRS Filling . 80

4.2.2 Parameter Free DRS – “DRS2” . 83

4.2.3 Number of Slots . 84

4.2.4 Confidence Estimation . 87

4.3 Classification Frameworks . 88

4.3.1 Classifier Fusion . 88

4.3.2 Classifier Evolution by Partial Solutions (PS) 92

4.3.3 Intelligent Classification System (ICS) 95

4.4 Conclusions . 101

iv

5 Validating the Evolved Learning System 103

5.1 Building a GP System . 104

5.1.1 Specification . 105

5.1.2 Implementation Notes . 105

5.1.3 Novel Features . 106

5.1.4 Parameter Choices for a Generic System 108

5.1.5 Tree Builder Parameter Choices . 113

5.1.6 Performance Considerations . 118

5.1.7 Function Set . 120

5.1.8 Terminal Set . 122

5.2 The Evaluation of Fitness . 122

5.2.1 Sample Weighting . 124

5.2.2 Encouraging Generalisation Ability . 125

5.3 Comparisons . 126

5.3.1 Dataset Interface . 126

5.3.2 Comparing with ECJ . 127

5.3.3 Comparing to Other GP Results . 129

5.3.4 Comparing to Other Classification Techniques 130

5.4 A Discussion . 132

6 GP for Low-Level Vision Tasks 137

6.1 The Approach . 138

6.1.1 Segmentation . 138

6.1.2 Window Detection . 139

6.1.3 Feature Detection Approach . 140

6.2 Evaluating Image Features . 140

6.3 Image Features . 142

6.3.1 Colour Features . 143

6.3.2 Texture Features . 150

6.3.3 Location-Based Features . 154

6.3.4 Other Features . 155

6.3.5 Invariance . 155

v

6.4 Feature Selection . 157

6.4.1 Experiments . 159

6.5 Performance Considerations . 163

6.5.1 Image-Level Caching . 163

6.5.2 Fitness Caching . 165

6.5.3 Deployment Procedure . 169

6.6 Experimenting with Preprocessing . 170

6.7 Applications of Segmentation . 173

6.7.1 Skin Segmentation . 174

6.7.2 Terrain Segmentation . 175

6.7.3 Object Detection . 177

6.7.4 OCR Segmentation . 177

6.7.5 Conclusion . 178

7 A Framework for Evolving Solutions to Vision Problems 180

7.1 More Complex Vision . 181

7.1.1 Creating Objects . 181

7.2 Classifying Objects . 182

7.2.1 Shape Descriptors . 182

7.2.2 Material Features . 184

7.3 A Framework for Evolving Vision Systems . 185

7.3.1 Sub-Objects . 186

7.3.2 Discussion . 187

7.4 Jasmine . 188

7.4.1 Training Procedure . 189

7.4.2 Training Data Selection . 190

7.4.3 Feature Selection . 192

7.4.4 Feature Detector Evolution . 193

7.4.5 Object Classification in Jasmine . 194

7.4.6 Vision System Object . 195

7.5 Results . 196

7.5.1 Pasta Shape Recognition . 196

vi

7.5.2 Hand Gesture Recognition . 197

7.5.3 Lesion Classification . 199

7.5.4 The MNIST Dataset . 200

7.5.5 Flag Recognition . 202

7.5.6 Automatic Number Plate Recognition (ANPR) 202

7.6 Applicability . 205

7.7 Conclusion . 207

8 Conclusions 208

8.1 Assessment . 209

8.1.1 Multi-Stage Vision Systems . 210

8.1.2 Competitiveness . 211

8.1.3 Applicability . 212

8.1.4 Genetic Programming . 213

8.2 Future Directions . 213

8.2.1 Resources . 215

8.3 Closing Remarks . 215

vii

List of Figures

2.1 The Process of Artificial Evolution . 11

2.2 Local Minima . 12

2.3 An Example Genetic Program Tree . 15

2.4 “Full” Trees . 17

2.5 IF () Statements in GP . 18

2.6 Stochastic Uniform Sampling . 27

2.7 Crossover in Action . 31

3.1 A Vision Comparison of Different Noise Reduction Techniques 43

3.2 The Hough Transform . 49

3.3 The Watershed Transform . 52

4.1 An Example of a Decision Tree Classifier . 70

4.2 The f(x) Classifier Representation . 71

4.3 Modi Classifier Representation . 74

4.4 A Program Classification Map . 75

4.5 Comparing Automatic Threshold Representations 79

4.6 Unassigned Slots in DRS . 81

4.7 Filling-in Unassigned Slots . 82

4.8 Results for Different DRS Slot Sizes . 86

4.9 Fitness Results for Different Classifier Fusion Techniques 91

4.10 Classification by “Partial Solutions” . 93

4.11 Binary Decomposition . 97

4.12 Binary Decomposition vs Multi-class Classification 97

4.13 Assessing Class Difficulty . 99

viii

4.14 Distributed Processing . 100

5.1 Tournament Size and Population Redundancy 111

5.2 Hereditary Repulsion . 114

5.3 Less Redundant Tree Builders . 117

5.4 Comparing ECJ Program Sizes . 117

5.5 Comparing ECJ Program Sizes . 120

5.6 The Effect of Function Sets . 121

5.7 Comparing SXGP and ECJ on Public Datasets 129

6.1 Algorithms for Colour Constancy . 144

6.2 Exposure Correction Algorithms . 146

6.3 Variances in Illumination . 148

6.4 Haar Feature Examples . 154

6.5 Feature Scale Invariance . 156

6.6 Image Level Caching . 166

6.7 Duplication in Random Populations . 168

6.8 Deployment Procedure . 170

6.9 Pre-processing Results . 173

7.1 Object Grouping . 182

7.2 Vision System 1 . 186

7.3 Vision System 2 . 188

7.4 Creating Training Data . 191

7.5 Jasmine Feature Selection . 193

7.6 Live GP Evaluation . 194

7.7 Pasta Recognition . 197

7.8 Hand Gesture Types . 198

7.9 Posture Vision System . 198

7.10 Random examples selected from the MNIST database. 201

7.11 The Flag Vision System in Action . 203

7.12 An Evolved Vision System Recognising and Reading Car Licence Plates 204

7.13 Results on the COIL-100 Image Dataset . 206

ix

List of Tables

4.1 DRS Generalisation Improvement by using the DRS filling algorithm 83

4.2 DRS Method Comparison, including the result of an unpaired samples T Test. 84

5.1 Specification of SXGP, the author’s Genetic Programming Toolkit 105

5.2 Comparing SXGP and ECJ Toolkits . 128

5.3 Comparisons to Other Published GP Results 130

5.4 SXGP versus Other Techniques on 11 Public Datasets. 131

6.1 A Description of Several Haralick Statistics . 152

6.2 Feature Selection: Performance . 162

6.3 Feature Selection: Generalisation . 163

6.4 Fitness Caching . 169

6.5 Byte Code Performance Boost . 171

6.6 Preprocessing Results . 172

6.7 Information Gain from Preprocessing . 174

7.1 Training Data Selection . 192

7.2 Results on the MNIST database test data. 201

x

Datasets

Although the author’s software develops and uses bespoke datasets for a number of vision

problems, the following benchmark datasets, mainly from the UCI machine learning reposi-

tory, are used throughout this thesis for the purposes of comparison and validation. These

are summarised here for the reader’s convenience. Unless otherwise stated, results on these

datasets are averages following the execution of 50 runs.

Dataset Samples Purpose

BUPA 345 To predict whether or not a patient will suffer liver

disorders based on the results of 5 blood tests and

the number of alcohol units drunk per day. Validated

using 10-fold cross validation.

Glass 214 To identify 6 different types of glass, using 10 attri-

butes discovered following chemical analysis. Valida-

ted using 10-fold cross validation.

Heart 270 To determine the presence or absence of heart disease

using 13 different attributes, including the patient’s

age/sex and the results of various diagnostic tests. Va-

lidated using 10-fold cross validation.

xi

Dataset Samples Purpose

Ionosphere 351 To identify radar patterns indicating the presence or absence

of “some type of structure” in the ionosphere. Uses 34 at-

tributes collected from an array of 16 high-frequency anten-

nas. Validated using 10-fold cross validation.

Iris 150 R.A. Fisher’s classic dataset concerning the recognition of

three species of Iris using 4 attributes: measurements of the

width and length of flowers’ petals and sepals. Validated

using 10-fold cross validation.

PenDigits 7494 + 3498 To recognise ten different characters [0–9], hand-written by

44 authors, based on a feature vector of 16 attributes corres-

ponding to different arc lengths. Validation using a separate

test set.

Pima 768 To identify whether a female patient shows signs of diabetes

or not, based on 8 different attributes. Validated using 10-

fold cross validation.

SatImage 4435 + 2000 36 features from a multi-spectral imager are used to identify

6 different types of terrain on the ground below. Validated

using a separate test set.

Thyroid 3772 + 3428 To determine whether or not a patient has an overactive thy-

roid, using 21 attributes, 16 of which are binary. Validated

using a separate test set.

Vehicle 846 To classify a given silhouette as one of four types of vehicle,

using a set of 18 features extracted from the silhouette.

Validated using cross validation, for which 9 sets are pre-

defined.

WDBC 569 To diagnose the presence of breast cancer using 30 features

derived from a fine needle aspirate (FNA) of a breast mass

describing cell nucleii. Validated using 10-fold cross valida-

tion.

xii

Overview

The following is a high-level overview of the research described in this thesis.

xiii

Chapter 1

Introduction

Some 540 million years before you started reading this thesis, something interesting happe-

ned. Although living organisms have existed on Earth for over 3.5 billion years of our planet’s

4.5 billion year history, the most dramatic evolution of new species occurred during a period

of “just” 60–70 million years – an event we now referred to as the Cambrian Explosion. Al-

though the fossil record isn’t fully complete, the data suggest that life on Earth transformed

during this short period from mainly single-celled species to a world filled with the major

groups of complex, multicellular life still in evidence today.

The Cambrian Explosion was so rapid and pronounced that even Charles Darwin expres-

sed concern that it undermined his theory of evolution by natural selection. However, later

research [1] suggested that evolution is not, in fact, a process of gradual improvement, rather

it consists of large periods of stasis punctuated by rapid bursts of change. To this day, and in

the absence of other hypotheses, evolution is human-kind’s best explanation for how we all

came to be here – and how you come to be reading this thesis.

As it happens, it is from this period that the earliest fossil remains of animal eyes have

been found. While basic photo receptors are sufficient for an individual to distinguish light

from dark or day from night, an eye is something rather special. Our vision systems permit

us to explore and navigate through the world with a remarkable degree of understanding.

Although nobody knows for certain what triggered the Cambrian Explosion, some zoo-

logists [2] believe it was the advent of sight that sustained it. One can only imagine the

advantage of a predator with some form of sight would have in a world filled with blind prey.

The survival of a species would hinge on its ability to adopt better defences or to develop

1

CHAPTER 1. INTRODUCTION 2

such new senses in turn; an evolutionary arms race commenced. As it happens, the Burgess

Shale, a substantial deposit of fossils dating from the Cambrian Explosion, shows evidence of

the adaptations evolved by predators and prey alike. Nowadays 96% of the world’s species

employ form of vision system in order to perceive the world as illuminated by visible light1.

Most species have what one might describe as a vision system, including both eye sensors

and a degree of processing in the brain2. Indeed some species, notably birds of prey, have

significantly better eyesight than humans. However, humans are distinguished by the signi-

ficant portion or our already generously proportioned brains dedicated to vision processing.

In addition to being able to perceive our surroundings instantly in astonishing clarity, we can

recognise almost anything, including things we haven’t seen before. We can understand how

some tools and machines work simply by looking at them, all seemingly without effort.

Because these “tasks” can be performed without much noticeable exertion, it is quite easy

to be complacent about the quality and scope of our vision system. It is perhaps only when

we try to implement vision systems in silicon that we come to realise just what an astonishing

feat of engineering is to be found inside our heads. From our implementations of imperfect

sensor technology, incomplete vision algorithms and underpowered hardware, one gains an

appreciation of how much has been accomplished within and behind our eyes. Nonetheless,

while the tasks that computer vision researchers have set themselves are sometimes ambi-

tious, some great leaps forward have been made in recent years.

1.1 The Rise of Machine Vision

During the last decade or so, some applications of computer vision, such as the automatic

recognition of car number-plates or in-camera face detection have become ubiquitous. This

is thanks both to the significant increases in computing power available in increasingly small

devices and the quality of work undertaken by academic researchers and commercial orga-

nisations in labs around the world. Whether one likes or dislikes applications such as the
1Of course, visible light is only a small band in the electromagnetic spectrum. Interestingly, the wavelengths

within the “visible” spectrum are one of only two bands of light that can travel through water. Our continuing

exclusive perception of just this small band is a throwback to the initial usage of our eyes, evolved by creatures

who lived underwater.
2Although some species of jellyfish do not – their eyes are connected directly to motor receptors.

CHAPTER 1. INTRODUCTION 3

congestion charge cameras in London, they only exist because the machines can now do the

bulk of the vision processing automatically and accurately.

Now that machines can demonstrably perform a limited subset of useful vision tasks,

human ambition demands ever more applications for them to work on. Some are completely

new, such as the interactive window displays now showing on the streets of Tokyo or the

foyers of Harrods department store. As machine vision breaks out from military and research

circles into the mainstream, new topics of research arise, along with a desire to produce these

systems more easily.

How might one go about creating vision systems more easily? Certainly many of the esta-

blished, excellent techniques for extracting information from images are not easy to unders-

tand, being rooted firmly within the confines of mathematics, statistics and pattern analysis.

They are often built around certain assumptions about how the world appears, which may

not hold true, and they generally require the effort of an expert to select, implement and tune

them. In short, it is time-consuming and difficult to produce vision software.

1.2 Machine Learning

As a concept, it would be nice to be able to develop strategies in a way that required less

effort. Ideally we would have the computer do this on its own – a process broadly defined

as machine learning. After all, computers can work on certain problems much more quickly

than we can and, unlike humans, computers don’t have a concept of impatience nor do they

demand hourly wages! Modern computing power is certainly making heavy tasks such as

image processing increasingly practical and so the automatic learning of computer vision is

becoming more and more feasible. Indeed, some high quality vision software has already

been developed using machine learning techniques, for instance the work by Viola and Jones

on face detection [3].

One family of machine learning techniques takes inspiration from Charles Darwin’s theory

of evolution directly. The aim is that by simulating the process of natural selection, computers

may be able to replicate the explosion of progress and adaptation that occurred on Earth

540 million years previously. Evolutionary computation was largely confined to parameter

optimisation until computing power permitted the invention of Genetic Programming (GP)

CHAPTER 1. INTRODUCTION 4

[4], an adaption of the classic genetic algorithm [5] which evolves programs instead of sets of

numerical coefficients. Over the last twenty or so years, researchers have been exploring the

ways that programs themselves can be evolved to solve all manner of problems. As we’ll see

later, some equal or outperform human invention.

The value of machine learning is well understood, and accordingly many learning algo-

rithms have been proposed, most from outside the realm of evolutionary computation. Some,

such as neural networks, can already claim a variety of established applications within compu-

ter vision, notably character recognition. Most learning techniques, however, are constrained

either by assumptions or applicability. Support Vector Machines for instance, are an excellent

classification technique but can’t develop algorithms, per se. Neural networks are somewhat

limited in their ability to develop truly non-parametric solutions to problems. Decision trees

can make decisions based on features but cannot develop the features themselves. Genetic

Programming is distinct from each: as an abstract learning system with no particular under-

lying assumptions about input data, it is uniquely placed to develop a whole range of different

software, including all the examples above. As such, it seems appropriate GP should be used

for the automatic construction of vision systems.

1.3 Evolved Vision Software

As we’ll see later, Genetic Programming has already been put to work on a wide variety of

problems in computer vision. Although a number of excellent solutions have been evolved

by GP researchers, they are generally developed to prove that GP can solve problems within

a particular domain. However, if one is to devise and implement a separate GP learning

system for every situation, then one of the main advantages of machine learning – reducing

the human effort – is lost.

By contrast, this thesis explores the viability of the GP as a domain-independent generator

of visual routines; more specifically, the development of more complete, working vision sys-

tems – something that isn’t generally tackled by GP researchers. The author would define a

working vision system as one that takes images as input and returns high-level output without

requiring human intervention in the intermediate stages. The idea is to develop a framework

that can learn to develop vision systems applicable to a range of different situations, with the

CHAPTER 1. INTRODUCTION 5

proviso that all the task-specific information can be encapsulated within training data. The

key is that the framework should not require manual tuning, adaptation or modification for

individual tasks.

It is the aim of this thesis to explore the extent to which certain vision tasks can be learned

automatically (or with minimal human input) by this generic architecture, and to see whether

the GP-learned vision software is any good from a practical point of view. The feasibility,

accuracy and capabilities of vision components developed using Genetic Programming will

be described and analysed.

1.4 Challenges

Some would argue that the use of Genetic Programming is a self-imposed challenge in its own

right. As we shall later see, Genetic Programming does have some significant drawbacks not

least its reputation, which is not entirely undeserved, for being slow and inefficient.

A theme that runs through the entire course of this thesis concerns means by which Ge-

netic Programming can be made more efficient at solving problems involving vision. We shall

also see how many of the paramters usually required to define a GP run can be dispensed

with, turning the GP system into a flexible learning tool.

Despite the drawbacks, one cannot deny the power of evolution as evidenced by nature.

The potential of Genetic Programming to discover novel solutions by means we hadn’t pre-

viously considered motivates this author to produce vision systems whose task-specific com-

ponents are all evolved by GP, something that has not been done before.

1.5 Contributions

The author has made a number of novel contributions during the course of undertaking this

research. These are outlined briefly below:

• The author has developed a complete Genetic Programming toolkit specifically for the

purpose of solving vision problems, which compares favourably to a current widely-

used toolkit, ECJ [6]. p.104

CHAPTER 1. INTRODUCTION 6

• The author has developed a classification scheme using Genetic Programming termed

“Intelligent Classification System”, which produces demonstrably better results on pu-

blic datasets than the majority of other GP classification systems. The classification

system makes pseudo-intelligent decisions, can run in parallel, and can solve problems

with many classes. p.95

• The author has proposed an extension to an existing GP classification representation to

include confidence estimation. This makes it more suitable to certain problems and can

improve classification accuracy when used by multiple classifier systems.p.87

• The author has described how many of the parameters in GP systems can be optimised

or discarded such as to render GP into a suitably generic learning engine for vision pro-

blems .p.103

• The author has developed a generic feature-detection approach which is capable of

evolving components for a variety of domains, to a similar standard to those previously

published by GP researchers. .p.137

• The author has developed a multi-stage vision framework which permits the creation of

vision systems applicable to a variety of different tasks. The architecture is controlled

by graphical user interface which permits end-users to define tasks and create training

data visually. After the training data has been created, the interface initiates an intelli-

gent learning process to evolve complete vision systems automatically. p.180

• The author has demonstrated the vision systems on a number of different vision tasks

of a complexity not previously attempted by GP researchers. .p.196

• The author’s work on generating vision systems using Genetic Programming has been

published in [7]. By the time you come to read this thesis, two further papers will have

been submitted. The first is a more thorough description to the author’s vision system

CHAPTER 1. INTRODUCTION 7

generator. The second concerns the author’s approaches to classification by GP. . p.137

1.6 Thesis Structure

The topic of this thesis concerns two areas of study. Accordingly it begins with two literature

surveys. In the first the author introduces evolutionary computation in general and Genetic

Programming in particular, and covers a number of techniques and algorithms employed by

researchers in the GP community. In Chapter 3 the wider field of computer vision and pattern

recognition is introduced. A number of techniques commonly employed in computer vision

are described and assessed; solutions developed by human intuition and machine learning

are compared and contrasted.

The learning component of our system is based largely around the classification or la-

belling of feature vectors. Before discussing what features may be appropriate to describe

the content of an image, Chapter 4 considers how to use Genetic Programming in order to

generate classifiers in a general sense.

The field of information theory and pattern recognition is well established. There has

already been mention of various machine learning techniques. In Chapter 5 the results of the

author’s GP classifiers are compared to other GP toolkits and other machine learning systems,

in order to justify more fully the decision to use GP on a generic system. The chapter also

describes in more detail the implementation of the author’s GP toolkit.

Later chapters are concerned with the development of vision systems by Genetic Program-

ming. We do not believe it possible to evolve a complete vision system during the course of

a single evolutionary run; early it on it was decided to create a vision system comprising

several stages. The first is concerned with low-level vision tasks, or the detection of features,

and is discussed in Chapter 6. The further stages of the author’s vision system framework are

presented in Chapter 7, which covers how GP can be used to produce more complete, standa-

lone vision systems. It also describes how the process of creating them can be automated to

the extent that non-expert users can produce vision software. Finally, in Chapter 8 both the

capabilities and limitations of the author’s system are explored.

The reader is left with a question as this introduction draws to a close. How might one

CHAPTER 1. INTRODUCTION 8

create a vision system, that can learn to analyse medical images, read car number-plates,

recognise gestures in real-time or read sheet music, without any form of parameter tuning

or expert knowledge? In this thesis we’ll discover whether Genetic Programming can find an

answer.

Chapter 2

An Overview of Genetic Programming

At certain points in the 20th century, people were especially interested in measuring the

“redundancy” within languages – which letters are most repeated, and which words could ac-

tually be done without. While the reader may have guessed such information is particularly

useful for practitioners of modern cryptography, it also reveals some interesting characteris-

tics about the languages we speak. It turns out that most human languages are about 50%

redundant.

Although computer software is rather more restricted in its basic vocabulary, the range of

solutions to a particular problem that can be expressed in most programmingt languages can

be quite diverse. If one were to instruct a hundred programmers to solve a task, one would

probably amass a whole range of different approaches to the problem. Some approaches may

be better than others.

Genetic Programming (GP) is a machine learning technique that aims to develop computer

software through a similar process of producing redundant software solutions. GP also has

the potential, at least, to devise solutions that none of the hundred programmers would

have thought of. Fortunately, a squadron of human developers is not required for a process

of evolutionary computation – GP is intended to find solutions in a reasonably automatic

manner. In this chapter, the author will cover some of the key aspects of Genetic Programming

in detail, starting with the general rationale underlying evolutionary learning algorithms.

9

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 10

2.1 The Inspiration Behind Evolutionary Algorithms

The theory of evolution by means of natural selection (“survival of the fittest”1) is the esta-

blished scientific explanation of how intelligent life came to be on Earth. It is the process

by which heritable traits that benefit individuals become more and more common within a

species, and heritable traits that disadvantage individuals are rapidly discarded; those indivi-

duals with beneficial traits are more likely to pass them on to subsequent generations.

Key to the process of evolution is the variation between members of a species. Although

life is filled with instances of good and bad luck, mainly outside of an individual’s control,

features present in certain individuals but absent in others may cause the former to have a

slightly better chance of surviving until breeding, at which point those factors may be passed

on, perhaps to spread throughout the species. Although natural evolution is generally not

observable during a human life span2, the cumulative result of this selective process over

thousands or millions of generations is a species that has become highly adapted for survival

in a particular environment.

The second key to evolution is the ability of members of a species to store these adap-

tations reliably. If alternations cannot be recorded, then they cannot easily be accumulated.

This is made possible by each individual’s genetic material, or DNA, which encodes every-

thing needed to make a perfect replica. A copy of the individual’s entire genetic sequence

is present in every cell: the genetic material of any multi-cellular organism is massively re-

dundant3. At the point of reproduction, however, just one set of genes from each parent is

required for the creation of a new, genetically distinct, offspring. It is at this point where new

variations may be introduced, either following the normal process of combining two sets of

parent genes together (recombination, see p.30) or the abnormal event where errors occur

during the transcription process (mutation, see p.34). In either case, the offspring may be

more, less or equally capable of survival than its parents, which in turn affects its overall

likelihood of breeding. And so the process of natural selection proceeds.
1First coined by Herbert Spencer in 1864, later integrated into Darwin’s 5th Edition of On the Origin of Species.
2Exceptions do exist: evolution of species of fruit fly introduced into North America have been observed over

periods of less than 20 years [8].
3This is a safety mechanism that helps impede the rapid replication of mutated or otherwise damaged cells.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 11

2.2 A Very Brief History of Evolutionary Computation

Almost as soon as the computer age dawned during the middle of the 20th Century, resear-

chers became interested in using machines to simulate the evolutionary process. It soon

became apparent that as well as providing insights into the nature of evolution itself, these

evolutionary techniques had potential to solve contemporary engineering problems.

The author will shortly introduce three different evolutionary learning techniques, cove-

red in chronological order, to give the reader some idea of evolutionary computation’s own

evolution. Although the techniques exhibit some significant differences, they each share a

common evolutionary process, which is shown in Figure 2.1. The concept is to produce a po-

pulation comprising a reasonably diverse pool of solutions. Each solution is evaluated against

certain metrics, the better ones are selected for “breeding” in order to produce new solutions

that may become part of a subsequent generation. The process continues iteratively until

termination criteria are met.

Figure 2.1: The general process of artificial evolution

2.2.1 Evolutionary Strategies (ES)

Once of the first attempts at artificial evolution was the development of an optimisation tech-

nique named Evolutionary Strategies by Ingo Rechenberg in the 1960s and 70s [9]. In Evo-

lutionary Strategies, the population is composed of a number of individuals, each typically

represented as a vector of real-valued numbers (genes). The values are used to make deci-

sions depending upon the task. The chore of finding optimal values is left to the evolutionary

process whose search is driven by a mutation operator. The operator perturbs the values of

each gene by adding a normally distributed random value to each, simulating the genetic

mutations which cause much of the diversity found in the natural world. The parents then

compete with the children for a place in the next generation. In contemporary versions, the

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 12

learning environment comprises a population of “parent” individuals. Following the selection

of a number of good parents (the definition of “good” or “bad” in this sense will be discussed

later), a population of offspring is generated using mutation and recombination operators;

the mutation operator is the dominant means of producing variance.

Evolutionary Strategies has been demonstrated as a useful parameter optimisation tech-

nique for certain real-world problems, but is somewhat limited by the simple numeric re-

presentation of its individuals. It does not make use of a particularly accurate simulation of

natural selection or genetic recombination. “Classic” ES uses deterministic (greedy) selection,

which always selects the top n individuals to become parents. Although this approach initially

appears the best way to arrive at a solution quickly, it also significantly reduces the diversity

within the population, since the remaining individuals have a zero chance of reproduction.

Reductions in diversity may decrease the rate of learning in later generations, leaving the ES

learning system prone to becoming stuck in local optima (Figure 2.2). Selection techniques,

which usually aim to select better individuals while maintaining diversity, are discussed in

more detail in Section 2.3.4.

Figure 2.2: Sometimes solutions are only locally optimal. If the population concentrates its

search in these areas too much, it may become unable to progress further towards the global

maximum.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 13

2.2.2 Genetic Algorithms (GA)

Largely superseding Evolution Strategies were the Genetic Algorithms (GA), popularised by

the work of John Holland [10]. Holland’s work was focused on symbolic as opposed to

real-valued representation of individuals, which made its behaviour more easy to analyse

and model from a theoretical perspective, as well as more abstract, making it applicable

to different domains. Indeed, Genetic Algorithms are used in a whole variety of different

circumstances. Although GA and ES are broadly similar, there are a number of key differences.

The most important is that Genetic Algorithms use operators more closely related to our

knowledge of genetics, namely crossover (p.30), a more realistic mutation operator (p.34),

and inversion4, together with a less greedy selection implementation.

In essence Holland was more interested in the study of natural adaptation, and his tech-

nique was a closer abstraction of biological evolution than Evolutionary Strategies. Although

Genetic Algorithms are more complex than ES5, they are better equipped to proceed beyond

local optima.

2.2.3 Genetic Programming (GP)

Genetic Algorithms offer a significant improvement to the capabilities of Evolutionary Strate-

gies but that improvement is incremental; their inherently linear nature remains a limitation

(which is apparent in other systems based on GAs, such as XCS6). Genetic Programming is

an extension of the GA algorithm such that individuals are represented not as vectors of va-

lues, but as parse trees which can express non-linear logic in the form of computer programs.

Therefore, Genetic Programming is not a parameter optimisation technique but a method for

automatic programming.

Although several researchers investigated the automatic evolution of programs during the

1980s, the modern concept of Genetic Programming is based the work of John R. Koza who

published a tome of research on the topic in the early 1990s [4].
4Inversion aims to address the need for the function of genes to be independent from their position. It worked

by flipping the positions of genes in a section of the individual’s chromosome. It is less commonly used in modern

GA systems thanks to more sophisticated crossover implementations.
5Due to processing limitations, work on Genetic Algorithms had to remain largely theoretical until the late

1980s.
6XCS [11] is a classification system which uses a GA as its learning component.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 14

The primary difference between Genetic Programming and Genetic Algorithms is the dif-

ferentiation between phenotype and genotype. The genotype refers to the encoding of the

solution (in nature this is the genetic material, the DNA) with the phenotype relating to the

realisation of that solution; the eventual organism and its behaviour. In nature – and Genetic

Algorithms – these are distinct: the GA’s symbolic genes must be interpreted in some way

when applied to domain-specific problems. In Genetic Programming they are often the same,

so the programs being evolved may be used directly. Genetic Algorithms, therefore, are so-

mewhat restricted to discovering parameters required by certain models to solve a problem;

Genetic Programming can be used both for optimisation and the discovery of the model. We

shall come back to this distinction later in this thesis – sometimes a separate phenotype is

beneficial.

2.3 Components

Evolutionary learning systems usually comprise a number of core components necessary to

simulate the process of artificial evolution. In this section, we shall cover in detail four of the

most important components with respect to Genetic Programming. This section is intended

to give the reader an appreciation of the current areas of research in Genetic Programming

and some of its strengths and weaknesses with regard to:

• The Representation and Creation of Individuals

• The Evaluation of an Individual’s Fitness

• The Selection of Individuals

• The Choice of Genetic Operators

2.3.1 The Representation of Individuals

The purpose of each GP individual is to represent program code, so that the evolutionary

process can search for the program code that best solves a particular problem. GP researchers

generally adopt one of three main approaches to represent code. One of which is a linear

representation, in which each individual is composed of a list of commands, see Nordin [12].

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 15

These commands are usually low-level in nature, and may be used to develop machine-code

programs. Linear representations are simpler to implement, as they rely on a more straight-

forward data structure, but also suffer some drawbacks, chief among which is that it is more

difficult to ensure the program performs meaningful computations (see page 18).

The more common approach in Genetic Programming is to express programming code

using a tree structure (see Figure 2.3). The tree consists of a series of nodes which represent

programming functions and inputs. The leaves of the tree are referred to as terminals, through

which input values are provided to the program, either in the form of data acquired from some

process or as numeric constants. The remaining non-leaf nodes in the tree take any child

nodes as input parameters and perform some processing action on them, and are referred to

as function nodes. Execution starts at the top root node whose children are then traversed

recursively. In many cases, the output from the root node is taken as the output of the

program. The “size” of a program is usually defined as the number of nodes in its tree.

The tree may be extended into a graph (also known as cartesian GP) such as to represent

more complex dynamics, such as loops (see Teller and Veloso [13] or Shirakawa et al. [14]).

However, cartesian GP is less able to support strong-typing and it is more difficult to ensure

that programs are efficient.

The advantage of tree-structures is that they permit the dependencies and types of each

node to be taken into account more carefully (see page 18), and that they are better able to

handle functions which may require different numbers or types of arguments. In this thesis,

the reader may assume “genetic programming” refers to “tree-based genetic programming”.

Figure 2.3: An example tree whose function is equivalent to x = R/(G+B).

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 16

2.3.2 The Creation of Individuals

As was shown in Figure 2.1, the first stage in an evolutionary computation run is to produce

an initial population of programs. Since the system has no means of guessing the solution

to a problem, the process is largely random. The expectation is that within the randomly

generated population there will be some “good ideas” which can be built upon in subsequent

generations. In Genetic Algorithms, the production of random, fixed-length sets of constants

or symbols is straightforward, but the nature of GP’s tree representation makes the process

rather more complex.

Koza proposed three methods for creating random program trees, given a set of function

and terminal nodes, and a maximum-depth parameter which sets an upper bound on the

size of the tree. The process in each case is similar: add children to the root node until its

constraints are satisfied (for instance: “I require two children as arguments”), then apply the

same process to each child of the root node and so forth.

GROW Builder

Given a set of function nodes and terminals, the GROW builder selects one at random to

produce the root node. If the root node requires children then these are added in a similar

fashion, until terminal nodes have “completed” every branch. The GROW builder is simple

to implement and can run in linear time, and is commonly used in Genetic Programming

toolkits. Since the tree generation process is largely unconstrained, the builder can generate

a variety of regular and irregular tree structures, that is to say tree structures whose branches

all extend to the maximum depth, or those trees whose branches do not. However, the size

of trees generated by the GROW builder is dependent upon the ratio of function nodes to

terminal nodes. If the function nodes have arity n, then if the proportion of function nodes

to terminal nodes equals or exceeds 1/n, then the GROW builder becomes likely to produce

trees of infinite size! For this reason a maximum depth constraint D is usually imposed – if

the depth is about to exceed D then the GROW builder selects a terminal to complete the

branch.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 17

FULL Builder

Koza’s second tree builder [4] works similarly to GROW, with a small addition which causes

it to build “full” trees in which every branch extends to the maximum permitted depth D (see

Figure 2.4). This is implemented by selecting function nodes on all occasions except where

their addition would bring the branch beyond the depth D. There are some comments that

one could make about such a builder. Insisting upon a particular depth for trees appears

slightly restrictive, especially considering that there are fewer full-trees than there are irregu-

lar trees. The full-ness constraint may reduce the thoroughness with which the search space

is explored.

Figure 2.4: The distinction between a “full” tree (left), where all the branches extend to

the maximum depth, and a tree developed by the GROW builder, in which some or all the

branches may terminate before reaching the maximum depth (right). There are more “unfull”

trees than there are “FULL” trees.

The Ramped Half-and-Half Population Builder

Although the GROW builder is able to produce both full and under-full trees, it suffers from

one drawback, namely that the probability of reaching a particular tree size/depth is linked

to the proportion of terminals and non-terminals. Similarly, the full-builder is perhaps overly

restrictive for particular depths. To mitigate the disadvantages of each technique, Koza pro-

posed a strategy to use both while generating populations. Given a minimum depth Dmin, a

maximum depth Dmax and a required population size N , roughly N/(Dmax −Dmin) trees at

each depth Dmin, · · · , Dmax are generated, half using the GROW builder and half using the

FULL builder. However, as the author will assert later in this thesis, the ramped-half-and-half

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 18

builder still suffers the drawbacks of each builder. The GROW builder’s behaviour is affected

by different terminal sets, which clearly will have implications for any generic system. Later

in this thesis we will examine how to mitigate some of these problems.

Strong Typing

Koza’s early function sets tended to use nodes of the same “type”. A set composed of, for ins-

tance, the mathematical operators +,−,×,÷ and a series of numeric terminals x1, x2, . . . , xn

are all compatible with each other, since every node returns a numeric value and every func-

tion requires numeric inputs. However, more complex programs demand extra types. If one

wanted to introduce an IF (· · ·) function (see Figure 2.5), for instance, then it may still return

a number dependent on the branch it chose to execute, but its condition would have to be

boolean.

Figure 2.5: An IF () Statement in GP. The first branch is the condition, which decides which

of the other two branches will be returned as the node’s output. Nodes in this tree use

two different types: boolean and numeric. The code statement here is used to implement a

max(A,B) function, a useful non-linear transformation.

Although Koza proposed a clunky solution to the problem, an early deviation from the

original implementation was the addition of strong typing by Montana [15] which permitted

the use of different data types within the same tree. Strong typing is a common feature in

many programming languages: it prevents the compilation of code that may be semantically

incorrect. As the search space will consist of a number of potential useful solutions but a much

larger number of useless ones, the technique is also useful in preventing GP from needlessly

evaluating senseless trees and sub-trees.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 19

Strong typing is implemented in the tree building and search operators of the GP system,

each of which must ensure that nodes which expect certain types are satisfied. For instance

it may be specified that an add() node should only take numeric inputs; the GP system will

then honour this requirement. The author’s toolkit has extended this concept further, which

will be explained in Chapter 5.

Other Work

The generation of trees is important – the algorithm employed inherently defines the extent

to which the search space can be explored. Nonetheless, tree builders are a somewhat ne-

glected aspect of GP research. Since Koza’s initial work, only a few authors have proposed

alternatives.

Iba [16] developed a tree builder named RAND tree, which built uniform trees from the

bottom up, joining nodes then sub-trees together such as to build a single tree. This type of

approach permits the user control over the size of trees created. Although depth limits size,

the average size at a given depth remains dependent on the function and terminal sets. Iba’s

approach is less easy to implement with strong typing, and takes longer to produce trees than

does the simpler GROW method, which can execute in linear time.

Luke [17] made a study of tree builders and developed two algorithms (named PCT1 and

PCT2) which could run in linear time but still offer greater control over the average tree size

to the user. Luke’s PCT1 algorithm starts by calculating the probability p(t) of selecting a

terminal (rather than a node) such that the average tree size would be s. Given F functions,

each with arity ai, that have equal probability of being selected, p(t) is:

p(t) =
1− 1

s
F∑

i=1

1
F
ai

Luke’s PCT algorithm is otherwise identical to the GROW algorithm, except that the func-

tions and terminals are divided into two sets. The probability that a given node is selected

from the terminal set is p(t). Of course, this algorithm does not guarantee that trees will

always be of the user’s preferred size, they will only be of size s on average; indeed there

may be significant variance between different trees generated by PCT1 and the likelihood

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 20

remains that there will be significantly more small trees than large trees, which may account

for redundancy in the population.

In order to enforce a more fixed size constraint Luke suggested another algorithm, PCT2,

which could generate trees with to fit both a given average size and a given size distribution.

PCT2 starts by choosing a random tree size sr from the user’s preferred probability distribu-

tion, then builds a tree to match. The tree is built by adding non-terminals at random to open

branches of the tree until the tree size + the required number of terminals to “complete” the

tree equals or exceeds sr. At this point, terminals are added to the end of each branch to

finish the tree.

Both PCT1 and PCT2 can be extended to support strong typing, although this may some-

times conflict with p(t). As we have seen so far, there is no such thing as a perfect tree-creation

algorithm, although Luke’s builders would appear to solve some of the problems of GROW

and FULL. Still, each can produce redundant trees – trees that are identical to others in the

population, because certain tree depths have a limited number of possible tree combinations

which is less than the proportion of the population assigned to a particular depth. The author

will make additional contributions later in this thesis with regard to ensuring that random

populations do not exhibit as much redundancy.

2.3.3 The Evaluation of an Individual’s Fitness

Nature implements rather a blunt evaluation of an individual’s fitness: the organism will

either die before breeding (perhaps following a confrontation or another of life’s unpleasan-

tries), in which case its genes will disappear from the population, or it will survive sufficiently

long as to reproduce, at which point its genetic heritage is secured for one more generation.

Essential to any artificial system which learns through a process of simulated natural se-

lection is some kind of “fitness” function that describes mathematically the performance of a

program. This permits direct comparisons to be made between individuals such that some

may be selected for breeding. GP generally discovers solutions using a supervised learning

paradigm, using a human-generated set of training data that has been marked with appro-

priate classes. Individuals are then measured by their ability to emulate the human decision

making process.

If one is to develop a GP program for the purposes of pattern recognition, then the fitness

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 21

of an individual should be proportional to the number of patterns that it can classify correctly,

or rather the proportion of times with which its output agrees with the human decision.

Although humans usually associate higher performance with a higher “score”, in Genetic

Programming the reverse is the case: fitness is usually measured by counting the number of

mistakes. This means that a fitness value of zero signals that the “perfect” individual has been

found. In this case the term “fitness function” is something of a misnomer: “error” or “cost”

function is more accurate.

The most straightforward fitness function is defined as follows. Given a set of classes C =

{c1, ..., cn} and a set of samples {(x1, y1, w1), ..., (xn, yn, wn)}, with each sample comprising a

feature vector x ∈ X, the correct class y ∈ C, and a corresponding weight w = 1 . The fitness

of function f : X → C may be calculated as:

error1 =
N∑

i=1

wi[f(xi) 6= yi)]

In other words, error1 sums the weights of samples mistakenly classified. In the author’s

experience this kind of fitness function performs well, in spite of its apparent simplicity. Since

the function is calculated using only one measure, it is possible that a number of classifiers

may be assigned identical fitness; in which case the selector (p. 25), when faced with two

or more equally fit individuals, will choose the smallest. The training data error is thus the

overriding factor in determining an individual’s fitness; other desirable features are secondary.

We shall see alternate means by which competing criteria may be accommodated later in this

section.

Different Errors, Different Costs Some problems demand slightly more complex fitness

functions which permit certain adjustments to be made, usually relating to the relative cost

of making different kinds of mistake. A classifier can generally make two types of mistake:

either a false positive, where a sample from another class is incorrectly identified as the class

in question, or a false negative, where a genuine sample from the class in question is not

identified as such7. In some cases, notably medical diagnosis or credit management, the cost

associated of each kind of mistake is different. When diagnosing disease the false positive

may be alarming to the patient but is substantially less costly than the false negative, which
7Although the false negative in one class may be a false positive for another.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 22

can leave a person unaware of a potentially serious health problem which, upon its eventual

discovery, would no doubt leave the medical establishment facing a substantial claim.

The relative importance of different mistakes can be encoded by introducing extra co-

efficients α and β into the fitness function. An example, used by Roberts & Howard [18],

is:

error2 =
αTP

αN + βFP

where TP is the number of correctly classified samples (true positives), FP is the number

of incorrectly classified samples (false positives), and N is the size of the training set. This

fitness function produces a one-dimensional bias in favour of either sensitivity (maximising

the true positives), or specificity (minimising the false positives) depending on the ratio of α

and β. This provides an additional level of control that may be useful in tuning the system for

problems in which outcomes have different costs. For example False Positives are acceptable

for a cancer screening application, provided that the sensitivity is at or around 100%.

Extra Embellishments Penalties or rewards may be added to the fitness function to provide

incentives for certain behaviours. For multi-class problems, the fitness function may include a

penalty if at least one sample from each class is not classified (see Teredesai [19]). Although

the principle of “guiding” the classifier in this way may yield desirable outcomes, such a

penalty also creates a large fitness-step which may be disproportional to the improvement in

ability. In Chapter 4 we’ll see some of the other approaches to multi-class classification by GP.

Parsimony Pressure Interestingly, the author’s experiments have shown that the most ef-

fective fitness function is often error1, which, as we have seen, simply sums to the number of

mistakes out of the total training samples. It might well have been the preferred technique of

William of Ockam, the 14th century logician, had he been born six hundred years later and

with an interest in evolutionary computation. Ockham’s benchmark principle, now known

as Occam’s Razor, states that the simplest solution is usually the best one8. Simple fitness

functions, however, do not necessarily yield simple, parsimonious solutions. In fact Genetic
8The modern interpretation is slightly different to the original principle: “entia non sunt multiplicanda praeter

necessitatem”. which roughly translates to “entities must not be multiplied beyond necessity”.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 23

Programming is rather prone to producing over-complicated solutions to problems, described

as “bloat” (covered in more detail in Chapter 5). Unlike GA individuals, which generally use

fixed-length chromosomes, there is no arbitrary limitation on the size of GP trees, so they can

grow considerably. Parts of trees which do not contribute to fitness are described as introns9.

Introns are undesirable as they can reduce the efficiency of the learning process.

For this reason, a parsimony component is sometimes added to the fitness function, the

size of the penalty depending on the individual’s tree size. This creates a fitness pressure

towards smaller, simpler individuals. The extent to which parsimony is pressurised is de-

termined by a parsimony coefficient c, the choice of which requires deliberation of its own.

Parsimonious fitness functions are composed of a regular fitness metric f plus an additional

penalty associated with the individual’s size s:

errorparsimony = f + cs

Of course, particularly large values of c will cause the program to treat size as its main

objective and ignore f altogether! Poli [20] suggested a means by which c could be calculated

automatically in order to maintain a given average population size.

A further discussion of fitness with more specific regard to machine vision problems awaits

the reader in Chapter 5.

Multi-Objective Optimisation We have now seen a couple of examples where two objec-

tives are incorporated into a unidimensional fitness function. In the case of classification

error1 is quite often sufficient. However, research into multi-objective optimisation (MO-O)

deserves a mention here, not least because of the desire in some cases to gold-plate the defini-

tion of a useful solution with other beneficial characteristics. The crucial problem with MO-O

is that it isn’t possible to define “optimimum” in a scalar way given two or more objectives,

since different criteria will usually conflict with each other. In most cases it is only possible

for individuals to represent good compromises rather than globally optimal solutions. These

individuals, which represent the best possible trade-off between two or more criteria, are said

to lie on a Pareto Front.
9The term is borrowed from genetics, relating to DNA portions in genes which apparently do not perform any

function in the production of proteins.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 24

It is necessary, therefore, to consider the optimal solution instead as a set of solutions. Evo-

lutionary algorithms are particularly suitable in this regard because they deal simultaneously

with populations of possible solutions. Two issues immediately arise: how to define the local

optimality of solutions, and how to ensure that the population does not become dominated

by a single one of them. Various approaches have been proposed which fall into two broad

categories.

The main approach to multi-objective optimisation are the Pareto-based approaches which

do not attempt to define a fitness term which can never be optimal. Rather they evaluate

individuals according to their proximity to the so-called Pareto front, which is based on the

concept of dominance. An individual is said not to be dominated if there exists no other indi-

vidual in the population that can improve a given objective without causing a simultaneous

reduction in another objective. An individual is Pareto optimum if there exists no feasible

individual that can do this. There many be many or an infinite number of Pareto optimal

solutions; these are distributed along the Pareto Front. There are rather more solutions than

necessary: popular GA toolkits such as NSGA-II try to ensure that individuals in the population

are distributed over the Pareto front. The problem, as ever, is that assessing non-dominance

is computationally expensive, especially for large populations or large numbers of criteria.

It has been established that Pareto optimal solutions may be discovered using a scalar,

rather than multi-objective measurement of fitness, in which the objectives are all aggregated

into a single criterion. There are various approaches to doing this. Syswerda [21] used

an approach where the fitness with respect to each criterion is measured, then combined

together in a weighted sum. The question then becomes how best to define the weights for

each criterion – another optimisation problem!. So-called lexicographic ordering (Fourman

[22]) is more readily definable – the objectives are placed in order of importance. In a

competition between two individuals, the first objective is compared first; in the event of a tie

the individuals are evaluated against the second criterion and so forth. This approach works

well provided there are few objectives – objectives too far down the pecking order are unlikely

to be taken into account at all. Schaffer suggested evaluating different sub-populations with

different fitness functions, an idea later implemented by Fonesca [23]. The consequence of

this technique is that it selects individuals that can excel with regard to one criterion, but not

necessarily both.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 25

This completes a very brief survey of multi-objective optimisation. Later in this thesis the

author will touch upon a couple of multi-objective fitness functions: however in general the

addition of extra criteria inevitably harms the accuracy of the solution in classification. Other

criteria, such as efficiency, are desirable extra characteristics, but we will see that there are

other means to address bloat without compromising the fitness function.

Generality and Validation Sets While the fitness function exists to measure the accuracy

of a GP solution on a set of training samples, it does not necessarily indicate how robust or

general the solution may be on data that it hasn’t seen before. 1-Nearest Neighbour algo-

rithms, for instance, are immediately capable of 100% accuracy on training data, but may fail

to achieve decent results on test data10.

Initial experiments using Genetic Programming reported the performance of the evolved

programs on the same data sets that had been used to train them, a practice which gives little

indication of the actual robustness or usefulness of the evolved algorithms. Later research

split data sets partitioned into training and validation partitions, with the latter used to pro-

vide a better indication of the performance on unseen data. We shall take a closer look at

validation data later in this thesis.

Another means of encouraging “generalists” is to evaluate the individual on a series of

different datasets (or in the case of machine vision, images), and calculate the fitness indi-

vidually for each. The individual’s worst performance is then used as its overall fitness (see

Ebner [25]). This removes some of pressure towards over-fitting the training data, which

usually degrades the program’s ability to generalise and is an issue with non-parametric lear-

ning methods.

2.3.4 The Selection of Individuals

One of the primary concepts of Darwin’s theory of evolution by natural selection is that spe-

cies become better adapted to their environment by “survival of the fittest”. Artificial evolutio-

nary learning systems, therefore, are motivated to select “better” individuals while discarding

“worse” individuals. After the fitness of each member of the population has been computed,
10k-Nearest-Neighbour may also be slow to run on large data sets, although a Best-Bin-First (BBF) (see Beis and

Lowe [24]) algorithm can be employed to speed up the distance matching.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 26

certain individuals are then selected to be “parents” of the next generation. The characte-

ristics of good individuals are thus more likely to be re-appear in subsequent populations, at

which point the genetic operators will attempt to refine them further.

In this chapter we have already encountered so-called deterministic selection, used by

Evolutionary Strategies, in which the top n individuals in the population are guaranteed to be

selected as parents. Indeed, given the extremely limited computational resources available in

the 1960s, this was probably the only efficient means of getting a solution. However, selection

methods are guided by a well-known principle which states:

“The rate of increase in fitness of any species is equal to its genetic variance in

fitness” R. A. Fisher, 1958 [26]

So if deterministic selection chooses the best n individuals in the population, all other indivi-

duals have a zero probability of being involved in breeding. This means that the variation in

subsequent populations is derived from only a small, fixed subset of individuals in the current

population, and over time the diversity may disappear altogether. Diversity in the population

would be better maintained if each individual in the population is permitted at least some

chance of reproduction.

At the heart of the selection process, therefore, is a dilemma concerning the desire both

to utilise the most successful individuals immediately and to preserve the diversity of the

population as a whole – which may come in useful at a later stage. Good selection algorithms

should incorporate both a bias in favour of better individuals and sufficient randomness as to

maintain a broad range of different solutions within the population.

Three main selection algorithms are in common usage in the GP community: Fitness Pro-

portional Selection, Rank Based Selection and Tournament Selection, which we shall discuss

in turn.

Fitness Proportional Selection As its name suggests, this technique selects individuals from

the population with a probability proportional to its fitness. This may be implemented in prac-

tice using stochastic sampling (“roulette wheel” selection), in which a number of “markers”

are assigned to each individual, the number proportional to its fitness. To select an individual

from the population, a marker is randomly chosen and the individual associated with that

marker is selected. Sampling is repeated n times until a sufficient number of parents have

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 27

been selected. Dependent on the resolution of the stochastic sampling, some individuals may

have such low fitness that they are not assigned a marker at all, so the technique is biased.

Unless sampling is made without replacement, there is the potential for a single, very fit

individual to dominate the breeding population – at the expense of diversity.

For these reasons, Stochastic Universal Sampling (SUS) was introduced by Baker [27]. In

SUS, the individuals are shuffled before being placed on the roulette line with each marker a

fixed distance from the last (see Figure 2.6). The markers are then chosen all at once. Each

individual has a non-zero chance of selection, and the selection of individuals is fast. SUS has

zero bias, and reduces the potential for a single individual to remove all the diversity.

Figure 2.6: Stochastic Uniform Sampling. Each individual is allocated a given width on the

line, according to its fitness. Individuals are shuffled then placed on the line. A set number of

markers is placed along the line, equally distributed. The number of markers associated with

each individual determines the number of times it may be involved in breeding.

Still, even the enhanced forms of fitness proportional selection suffer from two further

drawbacks: an individual with an unusually high fitness remains likely to dominate the inter-

mediate parent population at the expense of diversity; and fitness proportional selection does

not provide a means of adjusting the selective pressure.

Rank-Based Selection This algorithm is similar to fitness proportional selection, except that

the raw fitness is discarded in favour of the rank of an individual, following the sorting of the

population by fitness. The individuals are ranked in descending order. The index j of the

selected individual may be chosen according to the following formula by Whitley [28]:

j =
⌊

N

2(c− 1)

(
c−

√
c2 − 4(c− 1)r

)⌋
The variable c determines the selective pressure, or the slope of the linear distribution. N

refers to the size of the population. The function converts the output of r, a uniform ran-

dom number, into a linear distribution which is more likely to select lower-indexed, fitter

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 28

individuals in the population.

Rank-Based selection has, therefore, two advantages over Fitness Proportional Selection:

the selective pressure can be adjusted, and the selection technique is less prone to outlying

fitness values. However, the sorting of the entire population introduces an additional compu-

tational overhead.

Tournament Selection Arguably the most commonly used algorithm used for selection in

evolutionary learning systems is Tournament Selection, on account of its simplicity to unders-

tand, model and implement, both on a single machine and on parallel systems.

Tournament selection consists of two stages: sampling and selection. t individuals are

sampled from the population, the most fit among which is selected as the winner. The selec-

tive pressure may be increased by using higher values of t. The choice of the tournament size

t determines the probability that an individual will be sampled at all (discussed by Poli [29])

and also affects the diversity and quality of the next generation. t = 1 tournament selection

is akin to random search – diversity will be maintained but there is no selection pressure at

all. When t = N the best individual will be chosen every time, but any diversity of the sub-

sequent generation will be eradicated. It is therefore necessary to choose a reasonable value

of t, which (in combination with N) defines the selective pressure.

Tournament selection does produce a sampling bias. There is a chance, due to the random

nature of tournament selection sampling, that an individual may never be selected. This

probability can be calculated as:

pselected =
(

1− t

N

)N

The formula assumes that the number of tournaments is equal to N , which is true in

standard evolutionary breeding process where one parent produces one child via mutation

and two parents produce two children via crossover. In a population of 500 individuals with

a tournament size of 2, the probability of an individual not being selected is 13.5% (which is

relatively constant for different values of N). Therefore 13.5% of individuals are evaluated

even though the result of the evaluation, their fitness, is never used: they never compete in a

tournament.

One solution, first suggested by Poli [29], is that individuals which are not included in

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 29

any tournament should not be evaluated. To do this, Poli pre-calculated the memberships of

a series of tournaments across a given number of generations (in the form of a graph), so

that individuals not participating need not be evaluated, or indeed created. Although this

is a tidy scheme, it is perhaps slighly overkill in the case of evolved vision: avoiding the

creation of individuals is probably unnecessary as it is fitness evaluation that requires the

most computational resources.

A simpler scheme was suggested by Xie, Zhang and Andreae [30], named “evaluated-just-

in-time” where individuals are evaluated only once they enter a tournament. While certain

individuals are still created but never evaluated, the authors pointed out that the bulk of

computational expense comes from the evaluation rather than the creation of the individual.

Perhaps the ideal solution is to ensure that the problem of sampling effects leading to

selection bias does not arise in the first place, this should be better able to maintain diversity

and makes use of the entire population. Sokolov and Whitley [31] suggested a different form

of tournament selection termed uniform tournament selection. If each individual is located

according to its index i in a population of sizeN , where i ∈ I and I = {0, 1, 2, . . . , N−1}. Each

individual is allocated a tournament partner whose index pi is selected such that pi ∈ I and

pi 6= i. The individual at index i then competes with the individual at pi. This guarantees each

individual at least two tournaments. The best individual in the population will be selected

exactly twice, and the worst individual will not be selected at all. This is the same idea as

suggested by Goldberg [32]. However, the value of t is then fixed at 2; it can be extended to

higher values of t, but ensuring that tournaments are unique becomes messy.

Island Selection Although more applicable to the evaluation of fitness than to selection,

it is certainly the case that evolutionary algorithms require more computational resources

than other learning systems owing to the wasteful nature of the search process itself. For-

tunately, evolutionary algorithms may also be executed in parallel with relative ease as the

time-consuming evaluation of individuals can be delegated to other machines with the relati-

vely fast process of selection and recombination left to a single machine.

A different form of parallelism, island selection (see Pettey et al.[33]), may also be im-

plemented using software to increase diversity and decrease premature divergence. Again

inspired by observations from nature11, island selection presumes that if the population is
11It is a common observation that distinct species arise following geographic separation, for instance the Ga-

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 30

split into sub-populations then each may tread a different path through the search space. Al-

lowing the sub-populations to inter-breed occasionally may help share the expertise of each

sub-region while maintaining more diversity that might otherwise be the case in a single

population.

2.3.5 The Genetic Operators

Following the evaluation and selection of individuals, new programs are generated by ad-

justing or combining the parents in order to find new and better solutions. In Genetic Pro-

gramming, these adjustments are usually performed by two key operators: crossover and

mutation.

Crossover

The main genetic search operator employed in Genetic Algorithms, and subsequently Genetic

Programming, is crossover, a process inspired by genetic recombination in the natural world.

In essence, two parent genomes are combined in such a way as to create a new individual

that is similar to but genetically distinct from both parents (see Figure 2.7).

“Standard” crossover is a simulation (and gross simplification) of the operation that hap-

pens during sexual reproduction. It works by selecting one sub-tree from each of two “parent”

programs at random12. The sub-trees are then exchanged between the parents to produce two

new individuals. These “children” are subsequently inserted into the new population.

The reasoning behind crossover stems from the idea that fit individuals are composed of

useful “building blocks”. By exchanging building blocks between individuals, the system may

find new and improved building block combinations which yield fitter individuals. In most

Genetic Programming systems, crossover is the dominant search operator, the main driver

behind the search process. The advantages of crossover were analysed by MacKay [34], who

showed that it permits useful sub-trees to spread rapidly through the population while rapidly

removing unhelpful ones.

Common Genetic Programming wisdom, inherited from Genetic Algorithm theory, sug-

gests that crossover is the best operator for genetic search. However, Genetic Programming

lapágos Islands Iguana or, closer to home, the four-horned Loghton sheep, which is unique to the Isle of Man.
12If the trees are strongly typed, constraints may be applied to ensure that both trees are compatible.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 31

Figure 2.7: The crossover operation. Given two parents, a point on each is selected as the

crossover location. The sub-trees are then swapped between parents to yield two distinct

offspring.

and GAs differ in various significant ways, chief among them being that the nodes in a GP

tree are not independent: the output of a parent node is dependent on the output of its chil-

dren13. Therefore, a single change lower down the tree can “break” the entire individual.

Crossover, therefore, is rather a blunt instrument, since it exhibits no intelligent strategy for

selecting suitable crossover points. The random means by which sub-trees are selected means

that otherwise fit programs can be severely disrupted. Experiments by Nordin et al. [35]

showed that the average fitness of child programs is less than half the fitness of the parents

following about 75% of crossover events for certain tasks: standard crossover often has de-

cidedly injurious effects! Furthermore, if the mean population fitness is reduced, then the
13The author acknowledges that genes in Genetic Algorithms can also be dependent in certain circumstances,

but in general each gene is independent.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 32

few remaining fit individuals will be selected more and more often, leading to a reduction in

population variability.

A second consequence of this harmful behaviour is that individuals with higher propor-

tions of useless code (that is to say code that does not contribute towards the individual’s

fitness), are more likely survive crossover intact. This is a principal explanation of code bloat

in Genetic Programming. Crossover also provides the mechanism by which bloat may be in-

troduced: in GAs the two alleles swapped are always the same size; but in GP they may be

between sub-trees of different sizes, which provides a means for programs to grow and grow.

Approaches to controlling code bloat will be described in further detail in Chapter 5.

Poli and Langdon [36] demonstrated through modelling and empirical investigations that

standard crossover was also local and biased. Local search generally yields offspring which

are not very different from their parents, and may not provide a thorough exploration of the

search space. Standard crossover is biased towards smaller sub-trees, since it is more likely

to make adjustments near to the leaves of the tree (there are more of them). In Genetic

Algorithms, by contrast, each individual is usually of the same length and each position has

the same probability of being selected, so recombination is inherently less biased. For various

reasons, therefore, it can be concluded that GA crossover and GP crossover are not quite

equivalent.

A substantial amount of research has been devoted to addressing the shortcomings of cros-

sover in the GP environment; the proposed refinements take many forms. One approach aims

to “undo” any destructive crossover events by only permitting recombined individuals into

the next generation if they are at least as fit as their parents. If crossover does produce poor

quality offspring, then they are discarded. This is generally referred to as “non-destructive

crossover”. The crossover operation may have to be repeated several times until a successful

outcome is reached. Usually it is tried only a fixed number of times to prevent the evolutio-

nary process from stalling.

Following a similar train of thought, Tackett [37] noted that animals often produce large

broods owing to the likelihood that a number of their offspring would not survive14. He

proposed that crossover between parents should be repeated n times to produce a “brood” of
14This is especially the case with fish. Wild salmon, for instance, usually produce broods of thousands of

offspring – following their epic journey through river and ocean, on average fewer than ten make it back to

spawn the following year.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 33

2n individuals (instead of the usual two), from which the best pair would be chosen. This

would increase the probability that some offspring would survive crossover15. Although this

helps to ensure that the crossover operator is less destructive while still able to explore the

search space, it does impose a significant amount of additional processing.

The author proposes that another way to make crossover less destructive is to use a classi-

fication procedure that is not dependent on a fixed output range or threshold, which reduces

to some extent the dependencies that make GP individuals fragile. We shall cover one tech-

nique, so-called dynamic range selection, in Chapter 4.

Ito et al. [38] attempted to adjust non-destructive crossover to remove its local bias and

make it concentrate on larger, more influential sub-trees. They did this by choosing first a

depth d at which to cross over, then selecting a node at depth d to create the crossover point.

Curiously they assigned weights to each depth i such that the weight associated with each

depth is 1/2i. This would appear to generate a bias in the other direction.

Lang [39] proposed another crossover strategy, dubbed “headless chicken” crossover,

where only one parent was selected from the population and then crossed over with a ran-

domly generated individual. Crossover was repeated until the offspring was better than the

parent – a form of hill climbing. While Lang showed that his method could outperform stan-

dard crossover on a multiplexer problem, Zhang et al. [40] showed that while it could still

get better results than standard crossover, it was also significantly slower. Crossover with

a random individual is analogous with point mutation, with the exception that it is more

wasteful.

If humans were in charge of the crossover operator, we might make more effort to reach

an intelligent decision as to how to swap sub-trees. In programming, we might like to change

a piece of code, but we usually need to ensure the replacement is still compatible with the

rest of the program. D’haeseleer [41] invented so-called context-aware crossover, which aims

to do something similar. The context of each node is encoded as an n coordinate array

A = p1, p2, ..., pn, where n is the depth of the node in the tree and pi is the position in the

tree to choose at depth i. D’haeseleer suggested operators where sub-trees could only be

exchanged if they had identical contexts. The problem with this approach is that it does not
15Tackett’s analogy is not strictly accurate, of course: offspring in nature are likely to die as a result of factors

relating to their environment, not because of their individual genetic predispositions.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 34

readily permit new, possibly better contexts to be discovered by crossover. The author would

further submit that the position of a node in a tree is not necessarily an ideal measure of its

context.

Another approach is to evaluate the usefulness of each sub-tree, so that they may be

protected. Hengraprohm and Chonstitvatna [42] proposed that the “value” of a particular

sub-trees could be identified my measuring the difference in an individual’s fitness if the sub-

tree were removed and replaced with a function-less node. This procedure is used to identify

the “best” and “worst” nodes in the tree. A single offspring is created by replacing the worst

node in one parent with the best node from the other, a process termed selective crossover.

Hengraprohm and Chonstitvatna demonstrated that their operator could converge on solu-

tions with around 20% less computational effort. The reader should note that computational

effort is a measure of how many individuals are evaluated before the population converges

on a solution. Although the “computational effort” was lower, the amount of processing

per-individual would have been significantly higher, so Hengraprohm ’s and Chonstitvatna’s

algorithm would not have yielded individuals more quickly.

In summary, one can see that there is a number of strategies for dealing with the side-

effects of crossover. It is perhaps possible to guide the crossover operator to more intelligent

decisions, but doing so requires a lot of additional computation. Unfortunately there appears

to be no analytical means of estimating the fitness or usefulness of a particular sub-tree: in all

cases, the addition or subtraction of a sub-tree from a program can only be measured empiri-

cally, which is computationally expensive. If GP is used to construct vision algorithms, which

are already computationally intensive, the addition of certain hungry crossover operators is

likely to make the process excessively slow.

Mutation

The second genetic operator in common use in Genetic Programming is mutation. In na-

ture, mutation is the name given to the rare event during which parental DNA is incorrectly

transcribed or copied. Although mutations occur in our bodies with surprising frequency,

their effect is usually confined to just one cell in the 50–75 trillion cells in an average human

being. Still, we all start off from a single cell, so any transcription error during the produc-

tion of that cell will become part of every subsequent cell in the offspring’s body. In nature,

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 35

mutation is usually benign, thanks to the redundancy within DNA; other times it is harmful

and occasionally it is beneficial. It is mutation more than crossover which is believed to bring

about the “unusual” changes that can trigger leaps forward in the evolution of a species.

Mutation is commonly used in artificial evolutionary systems. In Evolutionary Strategies,

mutation was simulated by perturbing the numeric values of genes. In Genetic Programming,

mutation works by manipulating the tree. The GP mutation operator works by taking a single

parent, discarding a sub-tree at random and replacing it with a new one, commonly generated

using the GROW tree builder. The adjusted parent is then inserted into the new population.

As we’ve seen, the consequence of fitness-based selection techniques and crossover is

to make certain sub-trees more abundant in the population, while discarding others. This

leads to a reduction in variability in the population, which may cause the search rate to

decrease. The rationale is that mutation can help maintain the variability in the population

by occasionally adding new sub-trees or re-introducing previously discarded ones that may

yet be useful.

The rate in GP populations is usually set much lower than crossover: between 10–20%

of the population are generated by the mutation operator, in recognition of the fact that

mutation makes completely new additions to an individual, rather than swapping sub-trees

known to make up reasonably successful individuals. Mutation is inherently more random:

overly high levels might bring about so-called “error catastrophe”, whereby the reproductive

process is so error-ridden that the identity of a species cannot be maintained16.

In common with crossover, mutation may have lethal effects on individuals. Indeed, many

of the issues associated with crossover also apply to mutation. Accordingly, issues like local

bias and destructiveness may be dealt with in a similar fashion as discussed earlier.

Elitism

The final means by which individuals may pass into subsequent generations is though repro-

duction. Reproduction refers to the insertion of an individual directly into the next generation

without subjecting it to either crossover or mutation. Since reproduction doesn’t involve any

further exploration of the search space, it is usually left at a very low level, or reserved for

16Some drug research is aimed at increasing the mutation rate in certain viruses, such as polio or hepatitis C,

such that they are unable to maintain their identity.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 36

so-called elite individuals.

As we have seen, the genetic operators are designed to discover further refinements given

a number of selected parents, but can also produce offspring with significantly worse fitness.

We have also discussed code bloat, manifested in GP programs as useless code fragments or in-

trons. Introns provide a form of protection against the effects of the genetic operators: introns

are expendable. The Baldwin effect is an observable phenomenon, in which the genes (and

introns) of successful individuals become more and more common in the population through

their increased breeding potential. Introns bloom in GP populations because, although they

don’t make an individual any better, they might help it to survive.

Elitism is a protective mechanism for situations where the selection mechanism fails to

select the best individuals in a population, or where crossover produces offspring that are

worse than their parents. Elitism guarantees that the n best individuals will be copied into the

next generation. These individuals are not affected by crossover or mutation and therefore

will continue to exist until better individuals take over the elite set. This is distinct from

deterministic selection since each elite is only copied to the next generation once.

In addition to preventing the population’s maximum fitness from regressing and helping

to ensure a higher end-of-run fitness, elitism also appears to reduce code bloat [43, 44], as it

reduces some of the advantage that introns offer to the survivability of individuals.

One of the problems of GP, exemplified by issues with crossover and mutation, is that

crossover lacks a mechanism for preserving the useful information it has discovered so far,

beyond the hope that natural selection will cause useful sub-trees to become more abundant

within the population. Andre [45] suggested the use of Automatically Defined Functions

(ADFs) in which the tree builder could take advantage of whole sub-trees as well as using the

basic nodes. It is intended that this technique would allow the GP process to generate and

keep those building blocks in order produce complex programs more easily. However, as we’ve

seen in the case of crossover and mutation, it is difficult to assess the usefulness of sub-trees

in a computationally efficient manner, so the identification of ADFs is not straightforward.

We shall consider another approach by which useful code fragments can be preserved in

Chapter 4.

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 37

2.3.6 Generation Gap Methods

Having covered selection as a means for selecting good parents for breeding, it is also wor-

thwhile considering the natural consequence of such an action – the removal of another

individual in order to maintain the population at the same size. We saw that in the classic

version of Evolutionary Strategies, the parents compete with their offspring for a place in

subsequent generations, a scheme referred to as plus selection, often represented as (µ+ λ),

where µ is the size of the parent population and λ the size of the new offspring population.

Plus selection bears much in common with a different paradigm, referred to as steady-state

evolution, in which the concept of separate “generations” is discarded in favour of producing

a much smaller number of offspring following each process of evaluation. In plus reproduc-

tion and steady state reproduction various deletion schemes exist in order to remove the worst

individuals from the combined population (see GENITOR [28]).

An more common approach, alluded to throughout this chapter, is referred to as comma

reproduction, denoted by (µ, λ), in which the offspring population completely replaces the

parent population – there is no overlap or competition between the two, so all individual

“lifetimes” are of a fixed length. The deletion scheme in comma reproduction is therefore

trivial – simply discard all the parents.

At first glance, it appears that plus reproduction is the more effective means of going about

evolution. It bears something in common with non-destructive-crossover, which helps ensure

that the genetic operators do not cause population fitness to regress and it does not discard

parents in an arbitrary fashion. Plus selection is an elitist strategy: parents will remain in the

population until such a point as offspring can outperform them. However, if elitism is applied

to half the population instead of just a few individuals, it can cause the population to become

stuck in local minima; it isn’t possible for individuals to regress and explore different avenues

of exploration. Substantial amounts of elitism will cause the same parents to reproduce

repeatedly, which compromises population diversity.

Wakunda and Zell [46] proposed a different selection scheme intended to help maintain

diversity within plus and steady state populations. They also showed that comma schemes

required more computational effort – more evaluations – in order to achieve a desired degree

of fitness on certain problems. Holland and Reitman [47] found that generational reproduc-

tion was not suitable for classifier systems where each classifier is to some extent dependent

CHAPTER 2. AN OVERVIEW OF GENETIC PROGRAMMING 38

on the others as decisions are made by the population as a whole (see Wilson [48] for a more

definitive version). They found that replacing only a small part of the population at a time

was more beneficial than replacing the whole population in one go. Eggermont et al. [49]

performed a comparative study that appeared to show that generational GP yields slightly

better results, on average, than does steady state GP on certain classification problems. This

may be because the steady state approach does not encourage learning to the same degree.

De Jong [50] stated that the advantages of overlapping populations were offset by the effects

of genetic drift (loss of diversity). Like many areas of research in Genetic Programming, ge-

neration gap methods exemplify the different approaches taken to solving problems; each is

applicable to certain situations.

2.4 Conclusion

In this chapter, the author has covered in detail the main components of evolutionary systems

in general and Genetic Programming in particular. An issue throughout, highlighted in the

section on multi-objective optimisation, is that there are often conflicting demands for each

component. Indeed, it is quite difficult to describe these components as being optimal in all

circumstances; we’ve seen that most have particular advantages and particular disadvantages.

Consequently it is difficult to write down the definitive set of parameters, although this is

desirable if GP is to be rendered into a “black-box” learning system for evolving vision systems

in general. Later in this thesis the author will go about describing suitable choices that make

GP suitable for learning vision components in particular. We shall now turn our attention to

those vision system components – the major challenges and areas of study in computer vision,

and the quality and extent of vision software evolved by GP researchers thus far.

Chapter 3

A Brief Overview of Computer Vision

In 1932 a small group of students at Harvard Business School commenced work on an am-

bitious project. They were lead by a man named Wallace Flint, whose idea was to develop

a system by which products in a catalogue could be identified by a unique code that was

readable by machine. Given a set of punch-cards from the customer, the system could then

go about producing an invoice and updating the stock count automatically. Unfortunately

for Flint and his students, the world was in the midst of the worst economic depression of

the 20th century and his idea failed to gain momentum. It was another twenty years be-

fore the birth of the modern barcode and a further two decades before it finally caught on

in a mainstream sense in the mid-1970s. It could be argued that barcode readers are now

the most ubiquitous machine vision systems in use throughout the world – indeed it would

be inconceivable for most modern stores to operate without them. The use of barcodes has

extended beyond retail too – they are used for ticket validation in sports venues, provide

mobile-phone-readable hyperlinks to web pages, and have been employed in miniature form

in order to identify and track the movement of individual bees. Like most machine vision

systems, barcode readers automate and simplify complex or tedious aspects of modern life;

such systems are both desirable and profitable. Unfortunately vision in a truer sense cannot

be confined only to the highly-constrained patterns apparent within barcode patterns, but

should be applicable to images in general.

The reader will probably be familiar with the well-known saying that “a picture is worth

a thousand words”, which somewhat understates the complexity inherent in imagery. Indeed

if it were possible to summarise any image in a mere thousand-word précis, the work of

39

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 40

the computer vision developer would be more easy! Still, most of us are familiar with the

ability of computers to process complex data much more rapidly, accurately and patiently than

can we, but software is typically dependent upon the data being well organised or carefully

encoded. Images, by contrast, are usually characterised by large amounts of unstructured,

redundant or irrelevant information that hamper the machine’s ability to perceive that which

we can see so easily. Computer vision is the area of study concerned with making sense of

images in such a general sense. It incorporates a broad range of different sub-topics including

signal processing, segmentation, object detection and localisation, image matching, motion

detection and tracking, classification, recognition, 3D reconstruction and many others. Rather

than attempting a comprehensive review of the field, the author shall instead concentrate this

brief survey of the vision literature to a selection of topics, some of which will be discussed in

more detail later on in this thesis. For more substantive introductions to computer vision, the

reader is recommended to read textbooks such as those by Parker [51] or Davies [52].

In this chapter the author will compare the work of conventional machine vision resear-

chers to equivalent solutions discovered by Genetic Programming and machine learning tech-

niques in general. Where possible, the relative quality, applicability and advantages of ma-

chine vision systems shall be discussed; towards the end of this chapter the application of

Genetic Programming to vision problems shall be assessed in a more general sense, setting

the scene for the author’s work.

There are various ways in which one can organise a survey of computer vision; in this

chapter we shall take a “bottom-up” approach and start with the lowest level image opera-

tions, working upwards to higher-level algorithms.

3.1 Image Acquisition

All vision systems require one or more images as input, which may be captured through a

digital still camera, video camera, or scanner. Whatever the device, a characteristic of any

electromagnetic signal captured by electronic sensors is its liability to a degree of disruption

or noise. It is preferable that this be minimised before image processing can start in earnest.

Noise arises from three sources. Two of these, readout and thermal noise, can be mini-

mised through better sensor circuitry, but the dominant source of noise in images collected

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 41

by digital sensors is photon or shot noise and cannot. This is caused by the quantum nature

of photons themselves and the non-regular rate at which they are emitted and subsequently

detected. Although it is easy to think of photons as being so tiny that their number must

be vast, the human observer can in fact detect light at a rate of as little as 10 photons/sec

at certain wavelengths, and advanced sensors can detect single photons at a time. Although

we would ideally like to measure the average number of photons reflected from the scene

onto a particular CCD/CMOS element, if the number of photons actually captured during a

given interval is relatively small then the number may deviate significantly from the average,

leading to a noisy image. Noise is usually considered to be signal independent and becomes

most apparent when the signal itself is relatively weak, for instance when taking photographs

at night.

Perhaps the most effective way to remove noise from images, therefore, is to accumulate a

single image during the course of a number of separate exposures, which generally causes the

noise to average itself out while leaving the signal intact. However, one needs a reasonably

large number of images to improve the signal to noise ratio, which may be computationally

expensive. Furthermore the camera and scene need to remain static during the exposures to

avoid smeary blurs appearing, which is not very often the case! Although some commercial

vision systems use sophisticated hardware to achieve a desirable and consistent image quality,

for vision systems in general such hardware cannot be relied upon. Indeed, our own eyes are

still able to recognise objects in poorly captured images; artificial vision systems should be

capable of the same. Accordingly there is a number of software techniques designed for the

purpose of active noise removal. Although these techniques cannot uncover information from

the image that wasn’t there to begin with, their purpose is to achieve a more consistent image

quality which should make subsequent processing more robust.

Low-pass filtering, implemented using a Gaussian convolution mask, is a simple noise

reduction technique. The mask re-computes each pixel’s value as a weighted average of its

original intensity and those of its neighbours. This reduces differences in intensity due to

noise. However, legitimate differences in the signal level, such as those found at edges in the

image, are also diminished causing a loss of definition. A better, non-linear technique instead

chooses the median intensity of a pixel and its neighbours. As this technique redistributes

existing intensities rather than creating new ones it is less susceptible to producing a blurring

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 42

effect than the Gaussian filter and therefore maintains definition more effectively. Although

median filtering requires more computation (to calculate the median it is necessary to sort

the values), it is a preferred technique in computer vision applications, although it will fail if

too many of the pixel’s neighbours have also significantly deviated from their “true” values.

The mode is perhaps the most useful average to take, since it selects the value with highest

probability. Although the mode is poorly defined when choosing among a sparse distribution

of data points, Davies [53] proposed a method to approximate the mode given the position

of the median. A consequence of using the mode is that the image becomes slightly sharper,

which indeed can be a desirable feature. Some results by these different techniques are shown

in Figure 3.1; there are relatively few examples of GP being used explicitly for noise reduction

so the figure also includes a result evolved by the author’s software.

The drawback of all the above noise filtering techniques, whether linear or nonlinear, is

that they apply the same procedure across the whole image, so there is always a chance that

non-noisy pixels will also be disturbed. A sensible addition, therefore, is to integrate some

form of detection which establishes whether a given pixel is noisy or not; if the pixel is noisy

then it can be processed using an appropriate filtering technique, commonly the median filter;

others are left untouched. This is often implemented using one or more thresholds to compare

a pixel with its neighbours, such as the work by Chen et al. [54]. Petrovic and Crnojevic [55]

used Genetic Programming to evolve a noise detector and stated that it yielded comparable

or better peak-signal-to-noise ratios on test images when compared to a wide range of similar

techniques.

Rather than evolving separate noise filters directly, other researchers have instead inves-

tigated the robustness of GP approaches on noisy data. The general consensus is that noise

in training data can help the GP system to develop robust solutions, which otherwise may

become over-fitted to unblemished data. Reynolds [56] injected noise into training data to

investigate the idea for a robot obstacle avoidance task. He stated that this appeared to en-

courage the evolution of robust solutions, although the robustness of the individuals was not

quantified on test data or otherwise. In a slightly more recent comparative work by Nopsu-

wanchai [57], the robustness of a robot controller was measured on a test set and compared

between controllers trained on data with varying levels of perturbation. In one of the less

surprising discoveries of recent times, it was shown that the controllers evolved with the hi-

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 43

Figure 3.1: Different noise reduction techniques working on the original, noisy image. Gaus-

sian filtering removes noise effectively but is too indiscriminate. Median filtering preserves

more definition (although some is still lost). “Paint Shop” refers to the edge preserving smooth

option in Corel Paint Shop Pro X2 R©. The author’s implementation of a Mode noise filter

causes a slight sharpening effect. Finally, the results from a noise filter evolved by the au-

thor’s GP toolkit.

ghest level of perturbation were most robust. The key point is that Genetic Programming has

the potential to incorporate noise handling into its choice and usage of features. Since noise

does not always follow expected profiles, it is worthwhile using a learning system that can

implicitly take observed noise characteristics into account.

Of course, noise is but one of many issues affecting the quality of captured images. Colour

balance and exposure are examples of other image characteristics that current sensor hard-

ware finds difficult to reproduce reliably. Exposure is limited by the dynamic range of current

sensors, while colour balance is particularly troublesome owing to the subjective and relative

nature of “colour” itself.

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 44

Ebner [25] used Genetic Programming to evolve an artificial retina capable of recognising

the true colour of materials. His retina consisted of a 2D array of elements, each of which had

red, green and blue sub-elements and could access the components in immediately adjacent

neighbours. Each element corresponded to one pixel on the image, a similar approach to that

used by neural networks which are also used in colour constancy. The colour of each pixel

was computed by iterating an update process on the image 100 times, using update equations

evolved by GP. Training was conducted on a series of Mondrian-like pictures1. Ebner reported

good results in using his program to restore differently illuminated images to their original

colours. In Chapter 6 we shall consider a few basic software approaches to colour constancy

and exposure control, and see whether they can render the author’s vision software more

robust.

3.2 Low-Level Vision

For now, let us assume that the image is of adequate overall quality, and consider some

of the fundamental ways by which machines may extract image content. The “content” of

an image, however, is not easy to quantify. Any scene may contain hundreds of objects of

all shapes, sizes, colours and textures. The difficulty is confounded by the sheer number

of pixels within any image: thousands at the very least. A popular approach is to start by

identifying those pixels that seem to indicate certain generic points of interest. Many of the

early approaches, perhaps typified by the convolution with masks of the 1970s and early

1980s, did little more than emphasise features for subsequent human processing. They were

later refined into techniques such as edge, corner and other interest point detectors which

are more suited to further interrogation by machine. More recent detectors such as SIFT [58]

and SURF [59], used to discover those points within an image which are most invariant to

transformations, are direct descendants. In this section we shall consider various approaches

designed to assist machines in identifying patterns that may be indicative of higher level

content.
1Mondrian’s famous, “pure abstract” paintings often consisted of black lines and coloured rectangles, one

of the most famous of which hangs in the Tate Gallery, London. On a pedantic note, the collages of coloured

rectangles without black borders used by computer vision researchers often bear more similarity to some by Theo

Van Doesburg, a peer of Mondrian’s.

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 45

3.2.1 Edge Detection

It is often the case that different objects are constructed from different materials, or that their

positions relative to fixed light sources will cause them to be subjected to different levels of

illumination. Therefore, breaks in pixel intensities provide a useful cue for the detection of

object boundaries and an essential first step for a variety of higher-level algorithms, for ins-

tance edge-based 3D template matching or some corner detectors. Accordingly edge detection

is one of the most thoroughly researched areas in computer vision.

The purpose of edge detectors is to identify whether local changes in image intensity

indicate the presence an edge – or not. Since any point where two neighbouring pixels have

different values is a potential edge, the edge detector’s decision is not straightforward; the

process is rather subjective. Furthermore, there are various different “types” of edge (sharp

edge, gradual edge, roof, trough etc), each of which have different intensity gradient profiles.

It is difficult for one algorithm to be able to detect them all. Nonetheless, a wide variety of

different approaches have been proposed.

An intuitive method of discovering edges is to compute a number of convolution masks

that correspond to edges at different orientations and then choose the maximum response

among them (see Wang [60]). However, this approach can only be rendered scale/rotation

invariant by deploying a large number of masks. As a relatively “brute force” approach, it

may be rather computationally expensive. Nevertheless, “template matching” is, in general,

a flexible technique which has a variety of applications, such as character recognition, face

detection or crater detection.

A more general approach to edge detection is to look at the second order derivative of the

image; zero crossings in the local intensity gradient are indicative of edges. The second order

derivative of the image may be approximated using the Laplacian convolution operator2:


0 −1 0

−1 4 −1

0 −1 0


An early edge detector, invented by Marr and Hildreth [61], used Laplacian of Gaussian

convolution in order to search for edges, a technique also used for blob detection. The gaus-
2The Laplacian response is believed to play a role in mammalian vision systems.

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 46

sian convolution is intended to remove noise that would otherwise yield false edges. As is

apparent from the mask, the Laplacian operator responds highly to fine detail, so it is often

used as a sharpening operator. Consequently the Marr Hildreth detector may be more ade-

quately described as one that finds regions of high intensity contrast. This includes both edges

and other features, giving rise to false edge responses.

A different approach aims to target edges more specifically. Differential gradient methods

estimate the magnitude of edges perpendicular to the x and y axes using the first order deri-

vative, which again may be approximated by convolution operators such as those of Prewitt

(m = 1) or Sobel (m = 2):

sx =


−1 −m −1

0 0 0

1 m 1

 sy =


1 0 −1

m 0 −m

1 0 −1


These masks approximate more succinctly the nature of an edge and therefore do not

respond to high-contrast non-edges as strongly as the Laplacian operator. Each mask may

be used to estimate the extent of the edge in each direction; the edge’s magnitude may be

calculated either using Pythagoras’ theorem, or by the approximation

m = |sx|+ |sy|

The magnitude of each edge candidate is then thresholded to determine the presence or

absence of an edge. The Sobel operators are able to work reasonably well using small masks

(which motivates the author to use them as a feature when using Genetic Programming).

Given two perpendicular measurements, a little trigonometry can yield a rough estimate of

the edge’s direction. However, in comparison with the Laplacian operator, the differential

gradient yields thicker edge responses.

The well-known algorithm by Canny [62] extends this approach with several stages of

additional processing in order to ensure thin edge responses are obtained and to mitigate

some of the problems associated with thresholding edge from non-edge. In Canny’s algorithm,

the image is first smoothed using a Gaussian convolution mask to remove noise that might

otherwise cause false edge responses. The intensity gradient of the image is then measured

in order to find candidate edges. A search for the local edge intensity maximum is used to

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 47

thin each edge down to single-pixel thickness, so-called non-maximal suppression. The final

identification of edges is performed by an algorithm called hysteresis, which makes use of

two thresholds. Edges below the first threshold are flatly rejected; all edges above the second

are accepted as bona fide edges. Those in between are only marked as edges if they connect

two such genuine edges. This reduces the number of interrupted edges in the final image.

Other, more complex techniques include methods that identify edges by viewing the image

at different scales. The algorithm by Bergolm [63] first blurs the image and locates intensity

gradients in excess of a particular threshold. Progressively less blurred images are examined

in order to localise the edge accurately. Rothwell et al. [64] proposed a few modifications

to Canny’s framework, doing away with the process of hysteresis and replacing it with an

adaptive threshold, stating that the contrast of an edge should not be a primary indicator

of its semantic usefulness. Numerous other approaches to edge detection continue to be

published, although it becomes progressively more difficult to differentiate between them!

Harris and Buxton [65] used Genetic Programming to evolve functions which could iden-

tify the discontinuities in a one dimensional signal. Their work was inspired by the theo-

retical aspects of the work of Canny; they assessed the fitness of evolved individuals using

Canny’s suggestions that a good edge detector should have a good signal-to-noise-ratio, loca-

lise each edge accurately and respond only once per edge. Their evolved function performed

better than Canny’s on real world signals. They stated that GP permitted the discovery of

near-optimal detectors for edges in signals which fell outside of the assumptions inherent in a

theoretically “optimal” detector. The authors later extended their software to render it capable

of working on real images [66] and once again showed that it could outperform theoretical

operators in applied situations. They showed that it was better to tailor an edge detector

for a particular “class” of images sharing similar noise characteristics than to use a generic

edge detector. Given appropriate training data, techniques such as GP naturally permit the

construction of tailored solutions easily and may provide an advantage in delivering robust

solutions to work in particular applications. All the generic edge detectors are dependent

to some degree on parameters (Canny’s detector typically requires three) which have to be

considered carefully. This raises once again an important motivation for the use of machine

learning techniques in computer vision – data in some problem domains do not necessarily fit

with assumptions made by some algorithms; a solution learned for a specific application can

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 48

sometimes produce better results. Incidentally, later in this thesis we will show how GP can

be used to evolve a detector for finding edges specific to a particular problem.

Chao [67] used a neural network to find edges in an image, using each pixel as an input

for the net, with the weight of connections between pixels being determined by their diffe-

rence in intensities. Following learning of the networks, the outputs on edges would tend

towards a value of one; everywhere else to zero. As the net was essentially learning the

weights for a convolution mask, results were found to be comparable with a Sobel operator.

Another approach, this time using an evolutionary learning technique, was demonstrated by

Bhandarkar [68] who used genetic algorithms. The individuals’ chromosomes were laid out

in 2D so that the GA could evolve “edge images” for locating edges in grey scale images: again

the GA produced, in essence, an optimised convolution mask.

However, Srinivasan et al. [69] used neural networks to devise a two-stage edge detection

approach that yielded a detector comparable with Canny’s. Edge detection is, therefore, one

instance where learned techniques may produce better results than “standard” vision algo-

rithms for certain domains of applicability. This is due to the inherent flexibility of machine

learning techniques to tailor specific solutions to specific problems.

3.2.2 Line Detection

An edge detector should be able to determine whether a given pixel is an edge or not. If

the detector is applied to the whole image, then the edge detector yields: another image.

As we have seen, computers find it difficult to understand the context in images, so edge

detection in itself is usually not enough to yield useful information. The long-established

Hough transform is a useful technique for determining whether a given edge pixel is part of

a larger linear edge, which itself can be more useful information. Depending on a threshold

value, the Hough algorithm be employed to detect lines of a particular minimum length.

More usefully, the Hough transform can discover the coefficients that define the line, so the

computer can gain access to more quantifiable information. If we choose to represent a line

in terms of any x, y point’s distance r from the origin, given an angle θ:

x sin(θ) + y cos(θ) = r

then for a set of x, y points all values of r can be calculated by iterating through all possible

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 49

Figure 3.2: The Hough Transform. From left to right we see the original image (usually

acquired following a process of edge detection), the contents of the accumulation array, and

the lines discovered by the algorithm.

values of θ, or rather a discretised subset of θ’s possible values. Plotting the values of r

against θ yields a sinusoidal curve. If all the curves are accumulated on the same graph then

the curves for a number of x, y points on one line will all cross at a single point. This point

represents the common values of r and θ, which define the line. These points are identified

by creating a two dimensional “accumulation” array. The Hough algorithm searches for peaks

in the array to find all the lines in the image.

As the Hough transform is at heart a parameter discovery mechanism, other geometric

primitives that can be parameterised, such as circles, ellipses and curves, can also be detected

in images using a similar process. For these reasons, and because the algorithm is suitably ro-

tation invariant, the Hough transform is used extensively in computer vision. It is a preferred

technique for applications such as road detection from satellite images. When the points are

taken following the tracking of particular objects, it can be used to detect (and thus predict)

the direction of moving objects, for example the movement of cars on motorways or satellites

passing through the night sky. The search can be made into a local one if we assume r to

be zero and measure coordinates relative to a point of interest. This reduces the search to

one dimension and can be performed quite quickly, making it a useful feature to be used by

Genetic Programming.

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 50

3.2.3 Other Points of Interest

Besides edges and lines, there are many other useful areas of interest in a scene, for which

other detectors have been developed. Some interest points are particularly generic, and may

be discovered mainly according to their invariance to certain transformations, making them

particularly useful for image matching. In popular use is the SIFT algorithm created by Da-

vid Lowe [58]. SIFT works by locating a number of points in the image (not edges) using a

difference-of-Gaussians (DoG) blob-finding technique. A “pyramid” of scaled DoGs is used to

find those blobs that are scale invariant. Each key point is then defined by a feature vector

descriptor which helps allow it to be uniquely and robustly matched. A later, slightly more ro-

bust, algorithm, SURF [59], is based loosely on SIFT, and implements sufficient performance

enhancements in order to work in real time. SIFT and SURF features are detected reasona-

bly consistently; they can be reliably identified between different frames, making them ideal

features for image matching, panorama stitching, and 3D scene reconstruction. Robots using

trinocular cameras can use common features in each image for distance estimation. SURF

and SIFT are also suitable for object recognition if the descriptors can be matched to an item

in a feature database.

Trujillo [70] used Genetic Programming to evolve similar features of interest. The fitness

function for the features was primarily defined by the repeatability of the feature in succes-

sive frames. GP was able to evolve an improvement over a rotationally invariant operator

proposed by Beudet; this is regarded as one instance where Genetic Programming was able

to develop a human-competitive result.

We have already mentioned in passing that the Laplacian-of-Gaussian operation is quite

good at detecting blobs, or circular points in a scene. Other interest points include ridges

and corners; various algorithms have been proposed for the detection of each. The intuitive

Wang and Brady corner detector, for instance, tracks edges and detects the points at which

the direction changes suddenly, indicating a corner. The SUSAN [71] family of algorithms is

able to integrate both edge detection and corner detection into one approach which requires

neither image differentiation nor noise reduction. The principle underlying SUSAN is to pass

a circular window over the image, comparing the value of the central “nucleus” to other

pixels within the window. The set of pixels with similar value to the nucleus is described as

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 51

the USAN3. Different USAN sizes can be used for the detection of different features. A USAN

which completely fills the circular area indicates the region is largely self-similar, so no edges

or corners should be present. A USAN size of approximately half the region size indicates that

the area is hovering over an edge, and smaller USAN sizes are more indicative of corners.

3.3 Segmentation

The concept of self-similarity used by the SUSAN detectors leads us towards a new topic, in

which images are partitioned into regions based on their homogeneity. Given that many items

are composed of a similar material, the process of identifying self-similar regions or segments

within images can play a crucial first step in object detection and recognition. Segmenta-

tion generally works by grouping pixels according some common characteristic, quite often

based on grey-level intensity. Since the boundaries of segments implicitly determine edges

(although perhaps less accurately), segmentation has the potential to kill two birds with one

stone, as it were. Like edge detection, segmentation has received a great deal of attention

from vision researchers over the years; a few of the more popular schools of thought are

studied here.

One of the most straightforward approaches is to threshold each individual pixel by its in-

tensity, yielding a binary image. Since the processing here is trivial, segmentation can readily

be performed segmentation in real time. Discarding either the “dark” or “light” areas will yield

the regions of interest, and is applicable for applications such as Optical Character Recogni-

tion (OCR) or various industrial inspection tasks. Although there is generally a substantial

contrast between printed text and paper (in the case of OCR), gradual changes in illumination

across the entire image usually prevent global thresholds from being suitable. More robust

are so-called variable thresholding techniques which analyse local intensity histograms and

choose automatically the threshold that divides the classes most completely, such as the tech-

nique by Otsu [72]. Ohlander [73] proposed a non-binary technique, in which thresholds are

chosen at the peak of intensity and colour histograms iteratively until no significant peaks

remain. We shall consider a couple of automatic thresholding techniques, including Otsu’s, in

our discussion of classification in Chapter 4.
3or “Univalue Segment Assimilating Nucleus”.

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 52

Such thresholding techniques are to a large extent dependent on the modality of the

histogram as a result of the relative occurrences of the “object” and “background” classes. If

a scene is dominated by the background class, then any peak in the histogram may be too

small for histogram analysis techniques to detect it. Although techniques such as gradient

relaxation (see Bhanu and Parvin [74]) attempt to take this into account, there are various

other means too.

One approach is region growing. A set of “seed” regions are progressively dilated until the

whole image is filled. One example is the watershed algorithm [75], for which there are many

implementations. If one imagines the image as a height-map derived from pixel on grey-

levels, “water” may be allowed to flood the terrain from the lowest points, or basins, until

the entire image has been covered. The different regions are then defined by the boundaries

between distinct water sources. The seed points in this case are selected automatically, but

may also be chosen manually, or by some other ad hoc method.

Figure 3.3 shows three stages of a recursive watershed algorithm progressively discove-

ring boundaries on a flag image. As can be seen, the algorithm is rather prone to over-

segmentation, finding too many regions, although segments can be merged together at a

later stage. Another technique applies hints or “markers” to indicate which parts of the image

are definitely contiguous and should not be over-segmented. Of course, such markers must

be manually drawn or discovered automatically using other approaches.

Figure 3.3: A basic watershed algorithm working on the image on the left.

There are several other techniques which are not mentioned here – segmentation, like

edge detection, is not well-defined so attracts numerous different approaches, each with dif-

ferent scope and applicability. The problem is apparent within the Berkeley Segmentation

Benchmark [76], a growing set of human-segmented images. Each image is segmented by

several people – and no two human responses are the same! Indeed, the evaluation of seg-

mentation algorithms is a field of study in its own right.

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 53

As evidenced by the above examples, the research within the mainstream computer vision

community is often focused on unsupervised segmentation. However there are no automatic

algorithms that are sufficiently general to work satisfactorily on all images. Once again this

motivates the author towards supervised machine learning techniques. A nice semi-hybrid ap-

proach was proposed by Campbell [77] who used a segmentation technique that incorporated

both supervised and unsupervised components. A Self-Organising Map (a type of unsupervi-

sed neural network) was used to produce the initial set of regions. The regions themselves

were then classified into different categories using another neural network. This combines

the advantages of unsupervised neural learning with the benefits of knowledge provided by

domain-specific training data.

Other machine learning techniques, especially optimisation techniques such as Genetic

Algorithms, have been used quite extensively in image segmentation. Genetic Algorithms may

also be used to optimise parameters for many of the algorithms described above. Brumby et al.

[78] introduced a different approach using Genetic Algorithms where each GA “gene” could

invoke a different image operator primitive (included were logical, spatial, thresholding and

spectral operators). The gene additionally specified certain parameters, and the input and

output “scratch panes” which would be affected by the operation. Their approach essentially

permitted the vision system to experiment with different image filters and operations as might

a computer vision researcher using MatLab or other software.

Attempts at segmentation by Genetic Programming proceed along similar lines, in which

the program more closely resembles a filter which transforms each individual pixel into a

particular class. In fact the process bears most in common with classification; each pixel is

described by certain features with programs evolved to identify whether or not the pixel’s

feature vector is representative of an “object”. The description of a pixel in terms of multiple

features is a distinct advantage. As one can see from the folds in the flag in Figure 3.3, a

continuous region can have both dark and light areas – so in this case the hue of pixels would

probably result in more accurate segmentation, although our perception of “colour” is itself

rather subjective from a machine’s point of view. The key is that intensity alone is not always

enough information in order to make a judgement about a particular pixel.

Of course Genetic Programming is not alone in making use of pixel features beyond grey-

value. Another family of algorithms cluster image pixels by their apparent similarity, a process

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 54

which is less dependent upon the size of individual classes but instead the differences between

different classes. Clustering may take various forms, including k-means-clustering, where

clusters are formed by iteratively moving instances between cluster centroids. The major

issue with k-means clustering techniques, however, is that the number of clusters must be

defined a priori.

A different approach, hierarchical clustering, takes an initial set of clusters and progressi-

vely combines them together based on similarity. An approach by Chang and Li [79], named

“Fast Adaptive Segmentation”, bears much in common with hierarchical clustering, in which

the image is partitioned into a large number of small regions which are progressively combi-

ned together to grow larger and larger regions. Regions may be merged if they are sufficiently

similar, and provided that there isn’t a significant edge along their shared boundary. The ac-

curacy of the eventual segments, however, is somewhat dependent on all previous decisions.

3.3.1 Applications and Image Features

We shall now look more closely at the efforts of genetic programmers to segment or otherwise

detect objects in images. Of particular interest is the kind of image features used as pixel

descriptors.

Poli [80] used Genetic Programming to evolve a custom filter capable of segmenting

magnetic-resonance (MR) images of the human brain. Although his terminal set was compa-

ratively modest, consisting of different scale image intensity averages, GP was able to invent

filters that were marginally more successful than that of a neural network.

Roberts and Claridge [81] proposed a system for segmenting skin lesions, some of which

are indicative of certain types of skin cancer, a problem made difficult by the natural varia-

bility in skin tone and texture. Their evolved programs were given access to a large range of

image features, consisting of thresholds, morphological operators, logical operators, region

statistics etc. One of the nice features of Genetic Programming is that the function set can be

suffused with a reasonably large number of operators: GP’s selective nature will choose the

appropriate ones. The evolved operator performed reasonably well, with a sensitivity of 97%

and specificity of 81%.

Among the metrics that may be used describe a pixel for the purposes of segmentation are

descriptors of its surrounding texture. Texture is crucially important the accurate segmenta-

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 55

tion of certain image types, including satellite, medical or multi-spectral images. Although

any feature that combines the output of more than one pixel will encode some detail about the

surrounding context, the computer vision literature suggests a number of specific approaches

for describing texture.

A popular tool in texture analysis is the grey level co-occurrence matrix (GLCM, also

referred to as a spatial dependence matrix, see Haralick [82]), which encodes the distribution

of co-occurring pixel intensity values at different offsets from a central point for different

levels of adjacency. A variety of different statistical features can then be calculated from the

matrix. Song and Ciesielski [83] evolved binary texture classifiers that could distinguish a

given black-and-white texture from a set of 47 others. Song and Ciesielski tried two function

sets, one using 195 Haralick texture features and another using only the raw pixel data.

They stated that GP was able to outperform the C4.5 Decision Tree algorithm marginally

when differentiating each texture from 47 others using the Haralick function set, although

both classifiers frequently attained 100% accuracy, on account of the training set’s simplicity.

More interesting was that evolved programs using the raw data set could still achieve > 90%

accuracy, indicating that GP can construct useful statistics itself as well as glue existing ones

together.

Laws [84] proposed a different algorithm by which textures could be described. He sug-

gested using a series of 5-pixel, one-dimensional masks based on Gaussian, Gradient, La-

placian of Gaussian and Gabor features, intended to measure image level, edges, spots and

ripples respectively. Different combinations of these were combined into 5 × 5 convolution

masks that could be run on the image, with the expectation that among the different com-

binations would be one able to distinguish between different classes of texture. Although

not particularly invariant, these can be useful descriptors of texture, and are ideal for use by

Genetic Programs, although they don’t appear to have been used by GP researchers before.

Quintana et al. [85] evolved programs to detect domain-specific areas of interest in images

using Mathematical Morphology (MM) features4. One of their experiments concerned the
4Mathematical Morphology [86] is a long established technique used for various image processing tasks. MM

considers sets of pixels, rather than the pixels themselves, and offers two basic operations whereby the set may

be expanded outwards or contracted inwards through dilation or erosion respectively. Although Mathematical

Morphology was initially conceived to work on binary images it was later extended to work on grey-scale images,

permitting new applications, such the watershed algorithm.

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 56

extraction of different musical symbols from sheet music: the notes, hooks connecting quavers

and clef lines. While the heads and lines could be isolated well, the GP method was unable to

segment satisfactorily the clef lines from the musical notation. It may be that MM is perhaps

not capable of removing large objects without eroding smaller objects such as the clef lines.

3.4 Object Detection

The reader may have noticed that the applications of GP described so far have drifted from

image segmentation to the detection of features of an increasingly specific nature. In this

chapter we have already seen some techniques concerned with the detection of particularly

generic features such as circles, corners or blobs, but here we shall cover the detection of

more particular patterns.

We shall start with a discussion of object detection in mainstream computer vision, taking

face detection as an example. Despite the innate ability of humans to detect faces robustly

and effortlessly, face detection is difficult to implement in silicon. Nonetheless, in recent years

face recognition algorithms have become relatively ubiquitous, working in real time in small

devices such as digital cameras. Since faces cannot be modelled with the mathematical preci-

sion of, say, a circular blob, machine learning techniques feature prominently in mainstream

face detection algorithms and object detection in general.

Various strategies have been employed in order to generate face detection algorithms,

including geometric approaches where the face is fitted to a 3D model, or more knowledge-

based approach where the common features of human faces (eyes, mouth, nose) are iden-

tified and faces recognised according to the known relationship between them. This latter

approach, while apparently logical, is rather dependent upon the assumption that the afore-

mentioned features are indeed the most robust means of identifying human faces. Among

the most influential papers on the area is the work by Pentland and Turk [87] who made

one of the first successful face detection systems. They used principal component analysis to

construct useful face templates, so-called eigenfaces (some of which bear little resemblance

to our concept of a face!). Weighted sums of various eigenfaces can be used to represent a va-

riety of actual faces. Since faces are matched based on intensity, face recognition algorithms

using this technique can be quite sensitive to changes in the position of the illuminant and

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 57

are not necessarily invariant to changes in rotation.

While a common strategy for making detection scale or rotation invariant is to use dif-

ferent sized templates, or to rotate the image itself through various angles, Rowley et al. [88]

used a neural network to develop a face detection system that implemented rotation inva-

riance in a more efficient manner. They first trained a detector to identify only the angle

of faces within a given window. As each angle was identified, the window was then “de-

rotated”; a second, upright-only face detector then decided whether a face was present or

not. The detector was trained on an initially small training set, with additional “false” images

added during the learning process to reduce the likelihood of the net yielding excessive false

positive results. One of the big advantages of neural networks is that it can be incrementally

trained using this kind of “bootstrap” approach. An issue in face detection, indeed all de-

tection tasks, is that there are many more examples of non-faces than there are examples of

faces; the training data is always insufficient to some degree. The problem with face-detection

algorithms, therefore, is not the sensitivity but the specificity – the ability of the algorithm to

work without finding too many false positives. Rowley suggested using multiple nets and

voting schemes to develop a consensus that may suppress some of these errors, however they

noticed this was sometimes at the expense of sensitivity. Such schemes may also fail because

there is no guarantee that separately learned algorithms will not make the same mistakes.

One technique used to develop a solution to these competing criteria is to use a boosting

framework, such as the AdaBoost algorithm by Freund and Schapire [89]. Adaboost works by

assigning a weight to each item of training data then iteratively adjusting weights following

the learning of classifiers to encourage high levels of accuracy and to ensure that each classi-

fier is different. Viola and Jones [3] made use of AdaBoost in the development of their own

face detection technique to combine various “weak learners”. The weak learners themselves

were Haar-like features, defined by parameters discovered by a Genetic Algorithm. Haar-like

features can benefit from the use of an “integral image” which permits the calculation of mean

and standard deviations of arbitrary image areas in constant time. Viola and Jones showed

that their approach was slightly more robust than that of Rowley.

Winkeler and Manjunath [90] demonstrated the use of Genetic Programming for face

detection using a multiple-scale windowed approach. Within each window, fifty-two pixel-

based features were made available to the GP system, as well as Gabor features and other

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 58

descriptors developed by mainstream computer vision. The authors suggested that island

selection would avoid premature convergence, a problem found in many machine learning

techniques. Code bloat is another common problem in Genetic Programming; it is worth men-

tioning here because image processing in particular demands that algorithms are reasonably

parsimonious, and it would be unfair to paint Genetic Programming in an exclusively posi-

tive light! One of Winkeler and Manjunath’s evolved solutions was composed of over 3000

nodes: a severe performance bottleneck. In a second experiment, a program was evolved

to distinguish roughly areas that contained faces from areas which did not. When combined

into a multi-stage approach, the processing cost was reduced by 75% and the false negative

rate was also cut significantly (although the effect on the detection rate was not reported).

The reader should be reassured, however, that it is probably possible to evolve a reasonable

classifier of a much smaller size. Various means by which code bloat in GP programs can be

curtailed shall be discussed throughout the course of this thesis.

We shall now move away from face detection in order to cover some of the other ways

in which Genetic Programming has been applied to object detection in general. Tackett [91],

who has the distinction of publishing the first significant GP paper concerned with computer

vision in 1993, evolved an automatic target recognition system for recognising targets in

military situations5. He used straightforward spatial features consisting of areas’ intensity

means and standard deviations to evolve tank detectors. Tackett compared his detectors with

an MLP neural network and found that GP delivered the more accurate solution. The creative

freedom afforded by the fitness function paradigm in GP makes it ideal for solving difficult

problems. Given a clear set of objectives, Tackett knew his program needed a detection

rate of only 96% and adjusted his fitness function to deliver no extra reward to individuals

whose accuracy exceeded that value, causing the system to favour more specific individuals

instead. The MLP neural network, whose learning algorithm aspired to solve 100% of the

“true” training data samples, was found to accommodate difficult samples at the expense of

lower specificity. As Tackett observed, this caused an unacceptable level of false alarms for

the neural network.

Roberts and Howard [92, 93], used Genetic Programming to evolve detectors for objects
5Despite the processing burden imposed by images in general and GP learning in particular, Tackett trained

his system on 2000 samples, an impressive feat at the time!

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 59

in complex environments – vehicles and ships in satellite images. The authors used single-

pixel-thickness circular statistics as features which are reasonably invariant against rotation

and noise. Four circles of different diameters were used, with the average intensity, standard

deviation, edge count and an edge distribution measure calculated for each. Again, the au-

thors encountered problems with false positives, and solved the problem in a similar manner

to Winkeler and Manjunath: a “rough” preliminary detector was followed by finer, second

stage detectors. The authors used a bias ratio in their fitness function (see p. 21) to sub-

jectively determine the sensitivity/specificity ratio that would determine whether to evolve a

rough or fine detector. The evolved detector was able to detect 89% of the vehicles with a

14% false positive rate. However there was no testing on unseen training data, and relatively

few images were trained. Roberts and Howard did not expect each secondary detector to pro-

vide a perfect detection rate, but rather suggested that different second stage detectors might

be good at detecting different kinds of vehicle, although this was not presented in evidence.

Other GP researchers have also used a variety of other basic features for vision tasks. Ro-

berts and Claridge [81] used GP to develop detectors using a generous selection of different

features including statistics about rectangular, circular and ring shaped windows, convolved

results, differences between 3×3 areas and various other features. Combinations of these

basic features can produce higher level operators capable of solving more subtle tasks, with

the essential goal being to find features specific to particular problem domains, including

shape recognition and pasta detection (a perennial favourite). In later work [94], the au-

thors went on to describe how Genetic Programming may construct and use imaging features

simultaneously using a process of co-evolution, where the operators and GP programs using

them are evolved simultaneously and cooperatively. The results published appear to show

that co-evolution in this manner can solve problems to a high degree of accuracy, although

unfortunately no comparison with “standard” GP was provided.

Although detection has its own specific issues (we’ve already seen the sensitivity specifi-

city tradeoff), it may be seen as the binary case of classification or recognition in general. In

computer vision classification is dominated by machine learning techniques, including sup-

port vector machines (SVMs), decision tree builders, and neural networks. We shall look at

classification in depth in chapters 4 and 5. For now, we shall briefly look at multi-class object

detection/classification by GP.

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 60

Zhang and Ciesielski [95] investigated the detection and classification of multiple kinds of

object. They conducted several experiments with different image types: square/circle classifi-

cation, coin classification, and haemorrhage/aneurism detection in retinal images. Detection

proceeded using a windowing approach, using various circular and rectangular statistics.

Post-processing was deployed to ensure that only the centre of each object was detected once

and only once. Good detection rates on the (difficult) retinal images were achieved but at the

expense of relatively high positive alarm rates, despite the post-processing.

Zhang, Andreae and Pritchard [96] went on to explore the usefulness of positional pixel

statistics. In an experiment using moving windows to detect basic shapes and different coins,

they investigated the effects of just using statistics of the whole window (mean, variance

and moments) in comparison to using just the mean in sub-windows. In another of the less

surprising discoveries of recent times, they found that whole window statistics were unable

to deliver sufficient information about shape, and the programs where sub-window statistics

were made available were able to produce better results more rapidly.

Any discussion of multiple-class object recognition would be remiss if it were to omit

a discussion of optical character recognition (OCR) which, like barcode readers, has been

around for a surprisingly long time6. Accurate recognition of characters is largely regarded as

a solved problem, at least for printed Latin-based alphabets. Nonetheless, it is by no means

a straightforward task; the offline recognition of handwritten alphanumeric characters or

indeed character-based written languages remains challenging.

Like face detection, character recognition is dominated by machine learning techniques.

Commercial OCR systems commonly use neural networks for recognition, since they are able

incorporate new knowledge during application. The key to most OCR systems is the choice

of features, which have a substantial impact on robustness. Assuming that a single character

can be detected and cut out from the image, it can be scaled to a fixed size. Each pixel within

the scaled image can then be used as input for the neural network. This was the approach

taken by Koza himself, and later by Spivak [97], who used binary features (“is the pixel at i, j

black?”) and a standard set of functions to develop classifiers for the hexadecimal characters

(0–9,a–f). Classifiers were trained on one font and then tested on others. The problem with

such an approach is that the binary features are not particularly robust, indeed the decision

6OCR has been used in British post sorting offices since 1965.

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 61

of some of the programs was based on the values of as few as four pixels.

Andre [98] made use of a more robust feature set in which the character is processed

to discover its boundaries. The shape is divided into four segments, with bounding boxes

measured for each one, as well as for the character as a whole. Andre showed that his system

could distinguish the letter ‘C’ from all others on about 96% of occasions. He also proposed a

clunky method by which a hand-written algorithm could be converted into a GP tree by hand,

and then evolved further to take into account new training samples. The author acknowledges

that neural networks can adapt to new situations in an altogether more elegant manner.

A slightly more serious attempt at OCR was undertaken by Teredesai et al. [99] in order

to recognise the characters 0–9 from the NIST handwritten digit set. Rather than deploying

a so-called “One Model Fits All” approach, they used a hierarchical feature set starting from

coarse overall features but progressing to increasingly finer distinctions within sub-regions of

the character image. Nine features were extracted at each stage, four based on gradient and

five based on momentum. The authors found that the best individuals tended to use features

at a range of different depths in order to make accurate distinctions. A binary classifier was

evolved for each digit, results between 95.9% and 97.6% were reported. The authors did not

report the overall accuracy of the multi-class classifier, so its overall capabilities could not be

assessed.

There are many applications of shape analysis beyond character recognition. Johnson et

al.[100] used GP to locate features within shapes. For part of an interactive system, they evol-

ved a program which could locate the positions of the right and left hands of a silhouette of a

person (taken against a blue screen background). Instead of using pixel statistics, they used

a basic “point” data type which could hold x, y coordinates. Various functions were provided

to find important points around the silhouette, such as the corners of the bounding box, the

centroid and the right-most point, and other functions could perform point operations, such

as adding them together or finding the point between them. Their results were quite success-

ful as their best program could find 93% of left hands, although their sinister programs didn’t

perform so well on validation data.

GP is otherwise rarely used for shape classification in images, despite a significant body

of work performed in mainstream computer vision. Over the years countless descriptors for

shape have been proposed. The most straightforward descriptor of a segment or shape is its

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 62

size. Morphological erosion followed by dilation may be used to discard small shapes that do

not convey much meaningful context. This is a somewhat computationally inefficient means

of filtering shapes by size, but can also be used to smooth the outlines of the larger shapes,

rendering them more suitable for further processing.

It is useful to identify the perimeter of a shape by tracking its edges. From the perimeter,

corners and other features may be identified7. Other simple features can detect the roundness

or rectangularity of the shape, and its aspect ratio and orientation. Other algorithms label

the shape according to each pixel’s distance from the edge providing descriptors that reveal

whether a shape is rounded or mostly thin. Conversely, shapes may be “skeletonised”, or

progressively thinned to the point where the shape resembles a tree. The number of nodes,

connections and leaves in the tree can then be used as descriptors of its structure.

Another family of shape descriptors use statistical moments [101] which are traditionally

used to describe the shape of probability distributions. Common statistics include the mean,

variance, skew and kurtosis. Another popular approach is to compute a complex hull, which

wraps around the shape as would an elastic band. From the hull can be calculated so-called

concavity trees (Sklansky [102]) which store information about the hierarchy of convex areas

of the shape, and unlike the examples seen so far can be used to reconstruct the shape com-

pletely. Metadata regarding the tree structure itself may be used as descriptors for object

recognition, or different concavity trees may be matched more directly in order to compare

two shapes (see Badawyl and Kamel, [103]. The advantage of many of these features is that

they are rotation and scale invariant.

Montes and Wyatt [104] used graph-based Genetic Programming to locate of the centre

of mass of an object. While not a particularly difficult problem to solve in practice (given

that the object had already been segmented), it was shown that GP could evolve its own,

reasonably accurate solution using only a single imaging operator (the mean intensity of a

square region).

There are myriad other ways of extracting image features: the discussion so far only

scratches the surface. More features will be described in Chapter 6 when the author comes to

apply them for the purposes of generic feature detection.
7The author spent an enjoyable month crafting algorithms for these ideas in his first year of study, although it

was mainly a process of wheel reinvention!

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 63

3.5 Vision Systems

As we approach the end of this chapter we shall turn our attention from isolated vision com-

ponents to vision systems, which perform as many levels of processing as necessary as to

produce high-level output from images. As we have seen so far, Genetic Programming has

been applied to a number of fields of endeavour within the computer vision domain; solutions

have been evolved with varying degrees of accuracy and robustness. Here is a brief summary

of the evolved vision algorithms covered so far:

Task Examples

Preprocessing
Noise Suppression [55]

Edge Detection [66]

Feature Detection

Texture [83]

Musical Notation [85]

Interest Points [70]

Segmentation
Multi-spectral Images

Medical Imaging [81, 80]

Object Detection

Faces [90]

Vehicles [91, 92]

Hands [100]

Robot Vision [56, 57]

Object Classification
OCR [97, 98, 99]

Shapes/Coins [96]

A common feature in all of these papers is the rather specific nature of the problems being

solved. There is, of course, nothing inherently wrong with this, although to concentrate on

a single domain diminishes one of the key advantages machine learning techniques offer

over the development of software by hand — the potential to learn solutions to more than

one kind of task and thus save time. If one spends as much time tuning and preparing the

machine learning technique as it would take to solve the problem using traditional computer

vision methods, then the research has little usefulness beyond satisfying a particular curiosity,

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 64

especially if the problem in question is one that has already been solved to a satisfactory

degree. However, if one can “generify” the learning system in such a way that two or more

problems can be solved, then one has a system with some added value.

The GAMERA framework [105] is a system designed for the production of document ana-

lysis systems in a general sense, and has been used for a variety of applications involving the

processing of historical documents and recognition of other printed characters. The frame-

work does not imply the use of a particular learning algorithm, but facilitates the production

of domain-specific vision systems such that they can be generated more quickly.

Later in this thesis, the author will present a software interface designed to provide a

unified interface for the production of vision system training data.

The definition of vision system is rather loose, not least because the architecture of such

systems is dependent on the application. Indeed, many authors describe their work as a vision

system when it is perhaps more appropriate to call it an image processing component. For

the purposes of this work the author defines a vision system as follows:

“A system which takes unprocessed images as input, then processes them in such

a way as to return high-level output without requiring further user interaction.”

There are many examples of working vision systems, both within and without the confines

of purely academic research. Machine vision systems are often used for the purposes of in-

dustrial inspection, for instance the inspection of products or foodstuffs on conveyor belts,

for detecting or counting items, or defect detection, such as cracks in railway lines or avia-

tion components. Security applications include the detection of aircraft, of people or unusual

behaviour, or indeed face recognition. Consumer level applications include gesture recog-

nition for human computer interaction or augmented reality applications. Applied vision is

commonly used in academic research as part of robotics projects. The iCub [106], currently

the most advanced humanoid robot in Europe, makes use of a number of different vision

algorithms, including saliency detection, object recognition and online learning.

In practice most vision systems will deploy several of the stages of processing covered

in this chapter. Given an image capture device, the vision system will go about acquiring

an image, pre-processing it, performing low-level vision tasks to emphasise the objects or

areas of interest, followed by higher-level processing, often classification. Indeed, there may

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 65

be several further stages not covered in this brief overview. In this chapter we have seen

most of the stages necessary to go about creating a reasonably complete OCR application.

Other systems, such as automatic number plate recognition, which is essentially OCR in a

less constrained environment, require additional stages of detection and greater invariance

to transformation. The key point in any such system is that the human should not have to

perform any part of the processing manually, such as telling the system the location of the

number plates or manually segmenting individual characters.

All of the GP research described so far has considered evolved vision in terms of a single

stage of processing within a larger context, implying further stages that must take place before

or after the evolved component’s execution. For instance, research on OCR assumes in each

case that the characters have already been cut-out from the image, binarised and scaled before

the GP operator performs its task. Likewise the skin lesion research performs segmentation

on individual images but does not suggest what to do next. In each case these papers relate

to the proof of particular concepts rather than working on producing something complete in

itself. The author has not encountered any papers which use more than one evolved stage in

order to develop a “vision system”. To put multiple stages of evolved vision together would

validate such components in a more complete sense – it is, of course, worthwhile to present

quantitative results regarding the quality of a given component, but its utility is best tested

when its output is used as input to another stage of processing.

We have seen that some Genetic Programming researchers do occasionally employ a multi-

stage approach, but this is usually restricted to two or more stages of processing by programs

that each perform the same task, though they may have been evolved using different fitness

functions. A common example is the evolution first of a “rough” detector to discard as much

of the background as quickly as possible, followed by a secondary detector to make finer

distinctions.

3.6 Conclusions

This chapter has described a number of different task in the field of computer vision. There

exist a wide range of approaches designed to tackle each, although it is not always straight-

forward to identify the most appropriate algorithm for a particular task. Usually the choice of

CHAPTER 3. A BRIEF OVERVIEW OF COMPUTER VISION 66

appropriate techniques and operators is undertaken by computer vision experts. We’ve also

seen various examples where machine learning techniques have been used to “glue” certain

imaging operators together in order to generate task specific features that can’t readily be

modeled mathematically. Some interesting solutions have been evolved by GP researchers. A

common thread running through many of the tasks is the need to take decisions: whether a

pixel is noisy or not, whether it sits on an edge or corner, is within a particular region, or is

part of a larger feature. The first step in the author’s framework, therefore, is to investigate

means by which Genetic Programming can be applied to making decisions in a general sense,

which is the topic of the next chapter.

Chapter 4

Classification by Genetic

Programming

Computers are excellent at crunching numbers and can do so substantially faster than we can.

Accordingly they are also very good at taking measurements, for instance from images. After

taking these measurements, however, the machine becomes rather less useful: commanding

a computer to perform more subjective tasks, such as recognising patterns, is less straightfor-

ward. Of course we humans have no difficulty in recognising the patterns, shapes and objects

in the world around us – it is something that our human brains can perform astonishingly

well. If challenged, most people would find it extremely difficult to objectify how or why cer-

tain things are so instantly understandable. It is so difficult, in fact, to describe why our brain

works the way it does that a word was invented for it: “intuition”, which in turn is difficult to

define! Although intuition will probably remain a trait reserved for living organisms for some

time to come, in this chapter we shall discuss how machines may learn to make subjective

decisions based on objective information.

Classification is the process by which a series of measurements may be transformed into

a decision regarding the object from which the measurements were taken. Decision ma-

king in general, and classification in particular, is not a topic confined to computer vision.

Technology now permits information to be collected and stored faster than ever before, so

finding algorithms to make sense of the piles of data we’ve amassed has been of interest to

data-miners and information theorists for some time. Many problems in computer vision too,

such as detection, recognition and segmentation, can be dependent upon the classification or

67

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 68

matching of patterns. In later chapters we shall consider exactly how one might take useful

measurements from an image, but here we shall confine ourselves to making decisions based

on arbitrary sets of data. We shall study the ways in which Genetic Programming can be

employed to evolve classifiers and investigate means to make the process more accurate and

generic.

We shall start by briefly considering the definition of a classifier. Almost any “object” can

be expressed in terms of its measurable characteristics. If the object is an animal, for instance,

we might describe it in terms of its pigmentation, number of legs, eyes or relative size. If we

take n measurements from each animal, then each individual beast may be represented as

a tuple {x0, x1, . . . , xn−1}. A classifier may be defined as any function that takes such an n-

dimensional feature vector as input and describes it using a one-dimensional class label. In

general, classification is about discovering groups and patterns in data and the boundaries

that define them.

As we will see in Chapter 5, there is a whole range of different classification algorithms,

since satisfying the above definition of a classifier is an ill-defined problem. There are va-

rious parametric and non-parametric algorithms developed for the purposes of classification,

where parametric methods are typically linear transformations and non-parametric methods

generally permit non-linear processing. The latter group of techniques includes decision tree

builders, neural networks and support vector machines (SVM). Decision tree builders work

by iteratively partitioning the feature space into progressively smaller, more uniform portions

that can each be allocated a particular class. Trained neural networks are weighted in such a

way that particular combinations of features will lead to certain output neurons. SVMs aim to

identify the decision plane that best separates two classes. We shall discuss the pros and cons

of each in the next chapter, but first we shall consider the various means by which Genetic

Programming can be applied to classification.

4.1 Representing Classifiers in GP

Genetic Programming is an abstract means by which to go about automatic programming.

As such its use does not imply any particular approach towards classification. In general

terms, the GP system is used to learn the relationship between a set of inputs and expected

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 69

output(s). The reader will recall that we can insert the inputs via terminals at the bottom of

the GP tree; processing takes place further up with a final, usually numeric, output expressed

from the root node. Unlike other learning algorithms such as multi-layer perceptron neural

networks, whose outputs map to specific classes almost by definition, it is necessary to em-

bellish our genetic programs with certain operators or other additions to ensure the process

yields suitable classifiers. While some of these additions may add preconceptions or assump-

tions of their own, the purpose is to interpret or translate the logic encoded within the genetic

program into the all-important class label. There are various means by which GP can be used

to develop classifiers, a few of which are summarised below.

4.1.1 Evolving Decision Trees

Many school children will be familiar with classification in the form of dichotomous decision

trees, which allow non-experts to identify particular species or types by answering a series

of straightforward “yes or no” questions: a favourite in biology field trips. This sort of ap-

proach is one of the most intuitive means of making a classification, not least because it can

actually be written down on paper! Accordingly there is a number of decision tree algorithms,

which aim to develop classification keys automatically. Algorithms such as such as the C4.5

algorithm by Quinlan [107] (and previously ID3 [108] and CART [109]) have been used for

classification for some time. The goal, to divide the feature space into a series of increasingly

homogenous areas, is implemented by representing a hierarchy of decisions in a tree struc-

ture. As a non-parametric method, decision trees can develop arbitrarily complex models to

fit data and thus can handle multi-class problems with relative ease.

Since Genetic Programming is at heart a tree building and optimisation technique, it is

also well suited for developing decision trees, albeit in a more ad hoc manner. Still, a little

work must be undertaken first in order to render GP capable of producing such trees. The key

function node is an IF (· · ·) statement, which permits conditional logic. As we saw in Chapter

2, it is useful to implement strong typing to help ensure the conditions make semantic sense.

It is also necessary to develop a new type of terminal node to act as a “return” function,

returning the decision up to the top of the tree. An example of such a tree is displayed in

Figure 4.1.

Bot and Langdon [110] used GP to evolve decision trees capable of solving a variety

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 70

Figure 4.1: An Example of a Decision Tree Classifier for Distinguishing Shapes.

of different problems, using a method similar to that described above. They were able to

use their system to solve some multi-class problems involving up to seven different classes.

Bot and Langdon’s evolved solutions were not always competitive with specialist decision

tree algorithms. Why might this be? The principal problem here is the mixing of genotype

and phenotype, of structure and behaviour: since the tree is responsible for both the logic

and its translation into class outputs, there is a high degree of dependency between parts

of the tree. For a branch to work properly, it must not only include the right logic but also

terminate with the correct return class. Disruption to either aspect may cause the tree to

stop functioning, so the crossover operator has even more scope for mischief! Because of this

dependency, making incremental improvements without breaking existing functions becomes

difficult. The author’s classification system will be compared to Bot and Langdon’s results in

Chapter 5.

4.1.2 f(X) Representations

An alternative approach is to have the GP process compute a value from some or all of the

features, then interpret the meaning of the value afterward. Indeed, the learning process

can be made more straightforward if the interpretation is performed by a separate algorithm,

leaving Genetic Programming to learn only the discriminant function: the logic that underpins

the eventual decision. The evolved function generally takes inputs X = {x0, x1, . . . , xn},

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 71

Figure 4.2: The f(x) Classifier Representation, producing a floating output which is translated

by a threshold operator

processes them in some way then returns a single, one-dimensional numeric output:

output = f (X)

As a minimum, the function set is composed of basic arithmetic operators. Many GP

researchers leave it at that. Other operators, for instance logical operators, trigonometric

functions or statistical methods can also be added to render GP capable of evolving non-linear

transformations.

The simplest interpretation of the output’s meaning is achieved using a threshold, which

yields a binary classifier (see Figure 4.2). Placing the threshold at 0 is a tidy choice: all

negative outputs are attributed to one class and all zero-valued or positive outputs are attri-

buted to the other; the number space is equally divided. Over the course of the evolution,

the programs should become better and better at producing meaningful output that straddles

the zero origin. A disadvantage of this approach is that it is limited to binary discrimination

between exactly two classes. While binary classification is sufficient for certain tasks, such as

detection algorithms, we shall see later in this thesis various examples of classification pro-

blems which involve more than two classes. By definition, these problems require more than

one threshold; yet there is no longer a set of thresholds that divides the number space equally.

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 72

The key problem with this technique, however, is that it doesn’t fully disassociate the

interpretation of a class from the logic. f() still needs to ensure that its outputs fall around the

zero-crossing in order to attain a reasonable fitness score. Although this kind of representation

is quite restrictive, it is nonetheless often used in GP classification.

4.1.3 Binary Decomposition

Having mentioned intuition at the very start of this chapter, one may take inspiration from hu-

man approaches to problem solving. One natural, intuitive, strategy is to break up problems

into smaller, more straightforward pieces. We’ve already seen how this is done using decision

trees. If the training data are composed of examples from more than two classes, then it may

be more reasonable to learn a solution for each class. The individual solutions can be chained

together at the end to produce software that can work for all classes. If the representation is

limited to binary decisions, then this is the only approach to generate multi-class classifiers.

There are two ways by which a multi-class problem can be decomposed into smaller

pieces. The first may be referred to as “complete”, or “one-vs-one” binary decomposition

in which a classifier is created to distinguish every class from each other class on an indivi-

dual basis, breaking the problem down into small pieces. For an n class problem this requires

n2 binary classifiers to be evolved, which rapidly becomes a limitation: it may take substan-

tially longer to evolve the solution and the classifier may take longer to execute. The second

is by class (“one-vs-others”), where a classifier is evolved to distinguish each class from all

others; an n class problem therefore requires n binary classifiers.

Binary decomposition is widely used in the pattern recognition community. It has also

been used by GP researchers, such as Spivak [97] who used GP to develop solutions to a

character recognition task.

Since each class now requires a separate process of evolution, the total learning time may

well be longer. Smart and Zhang [111] proposed communal binary decomposition in which

a set of binary classifiers is evolved at the same time, allaying some of the speed problems

of binary decomposition. They reported some success after testing their system on problems

consisting of four classes (which is reasonably modest compared to some of the problems

considered in later chapters). Regardless of the evolution time, however, the most important

consideration is whether binary decomposition can yield more effective classifiers. The author

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 73

shall present some empirical investigations into binary decomposition later in this chapter. For

now, we shall continue looking at different classifier representations in GP.

4.1.4 One Individual, Multiple Trees

We have seen two techniques so far. In the first, decision trees, it is difficult to ensure that

each branch of the tree’s logic associates itself with the appropriate return class. This issue

does not apply to the second approach, binary classification. The latter is, of course, limited

to two-class problems unless one splits up the problem into pieces.

A compromise was suggested by Muni et al. [112], who proposed the evolution of a

single individual that incorporated several sub-trees, one allocated to each class. The pro-

cess of binary decomposition could therefore be attempted during the course of a single GP

run. In order to ensure that most attention was paid to the weakest parts, Muni sugges-

ted applying the Genetic Operators probabilistically based on the unfitness of certain trees,

aiming to improve poor performers while protecting good solutions. Other post processing

methods (OR-ing) and heuristic rules for conflict resolution were used to boost the classifiers

effectiveness. His results were broadly competitive with a number of other machine learning

methods on benchmark tests (IRIS, WBC, BUPA, Vehicle, RS-Data), which tend to be domi-

nated by non-GP learning techniques. Muni’s trees used a zero threshold to determine their

response, so his representation was still limited by an incomplete separation of genotype and

phenotype. Muni’s results shall be compared with the author’s in the next chapter.

4.1.5 Modi Program Structure

Zhang and Zhang [113] proposed a different (“modi”) program structure , in which any node

may affect a vector of different outputs, each corresponding to a class. Each node in the

tree is processed as usual, but if bound to a particular class, it passes its value to the vector

upon execution. The class with the highest value assigned to it after the tree is executed is

determined to be the chosen class in winner-takes-all fashion.

The modi approach permits a single tree to behave as though it were several separate

trees, although the modi sub-trees may not be independent of each other. One advantage

is that branches further down the tree can work as completely separate units, or building

blocks, for a particular class and thus may not be so disrupted by the genetic operators.

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 74

Figure 4.3: A Modi representation. Some nodes can affect an output vector from which the

class is then chosen using a winner-takes-all strategy.

The modi method was able to make modest improvements over “standard” GP1, increasing

performance by up to 11% on a small set of datasets. However, the effectiveness of each

sub-tree is dependent on which class it chooses to contribute towards. As the number of

classes increases, so too does the chance that the node will choose the wrong class! The modi

approach too does not permit the logic and the translation to be truly disassociated.

4.1.6 Range Selection

Arguably none of the techniques so far have completely separated the individual’s genotype

from the phenotype, the logic from its interpretation. Loveard [114] suggested interpretation

using a program classification map (PCM), which divides the number range into a series of

slots, each of which is assigned a particular class (see Figure 4.4). The output from the

individual is matched to the relevant slot and the slot’s class is returned.

The class labels associated with each slot may be assigned class labels before evolution

begins (Static Range Selection), in which case each class is usually allocataed an equal number

of slots. This has the significant disadvantage that the classes are arbitrarily ordered and the

ranges chosen may not suit the clustering of different classes. An improved technique is to

choose the class ID for each slot at runtime to fit with each individual, referred to by the
1The authors did not, however, define what “standard” GP was.

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 75

Figure 4.4: A Program Classification Map divides a number range into a series of slots and as-

sociates a class with each slot. The class ID associated with each slot may be predefined (static

range selection), or discovered at run-time for each individual (dynamic range selection).

authors as Dynamic Range Selection (DRS). Classes are allocated as follows:

1. For each slot i

2. Find the tuples of training data M which, following processing by the GP program, are

allocated to slot i.

3. Among those tuples in M , select the most common class label and set this as the class

label of slot i.

The advantage of Dynamic Range Selection is that the GP programs can produce output

within a larger range and are not as restricted to a arbitrary thresholds or orderings. Ap-

propriate thresholds are automatically allocated after the individual has been developed, so

the GP system does not have to evolve a specific translation component, beyond ensuring the

output is within the range of values.

Among the design choices is how to set the thresholds that define the range and the slots

within. Usually the map occupies a range of values, say from −n to n, with s slots, such that

each slot occupies a range of size 2n/s. The authors chose the values of n and s relatively

arbitrarily. They stated that the output from the GP program should be rounded to the nearest

integer and that the map should occupy the range −250 to +250, creating 501 separate slots.

The process of determining class memberships for the map on a per-individual basis does

impose additional processing and memory requirements. This second learning step may once

again be thought of as analagous to the difference between genotype (the DNA of an indi-

vidual) and phenotype (its eventual behaviour) in natural life: although the purpose of our

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 76

genes is to build a body and a brain, the learning of language, or how to play chess for ins-

tance, is not hard-wired – it comes through practice during the individual’s lifetime. As was

mentioned in Chapter 2, this distinction is not very often apparent in GP, which tends to

concentrate on the genotype. The second step, of learning by experience, is often missed out

– this may account for why GP programs do not always perform as well as other algorithms; it

is equivalent to asking a newborn baby to start working on an algebra problem! In any case,

once initialised, the class mapping for a particular value can be extracted rapidly. Zhang et al.

[115] were able to use this strategy with some success on three different problems, although

the largest multiclass problem studied consisted of only four classes.

A similar solution aims to map the output of a program given a certain class onto a pro-

bability density function which can then be used to identify the classes; see Smart & Zhang

[116]. This has the advantage of providing a level of confidence estimation, provided that the

chosen probability density function models the distribution of the data. However, it imposes

a heavier burden of computation on the system. We shall see later in this chapter an impro-

vement to DRS by the author which permits an indication of confidence to be calculated in a

more efficient manner.

4.1.7 Computer Vision Inspired Techniques

By now the reader may have the impression that GP researchers are quite good at contriving

new ways to solve particular problems. As we have seen, one of these problems is how to

select thresholds automatically. Although Dynamic Range Selection is one flexible solution,

the computer vision literature also suggests established techniques for tackling this kind of

task, usually for the purposes of grey-value segmentation. A couple are introduced briefly

below.

Variance Based Thresholding

One simple means of automatic theshold search uses the variance between classes compared

to the overall variance in order to establish a reasonable threshold position, proposed by

Otsu [72]. If the output of the solution for every sample is collected, then a histogram of

its output may be computed. As the histogram forms a discrete probability distribution of

N samples over a range of different values i, then a threshold t will divide the distribution

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 77

into two classes whose values of i are either less than t or greater-than-or-equal to t. The

idea is choose the value of t that maximises the between-class variance σ2
b , an indicator of the

“distance” between two classes:

arg max
t∈{0,1,2,...255}

(
σ2

b

)
where the between-class variance is calculated as:

σ2
b = p0 (µ0 − µt)

2 + p1 (µ1 − µt)
2

where pn is the total probability of class n, µn is the mean of class n and µt is the global mean.

Since the total variance is equal to:

σ2
T = σ2

b + σ2
w

then by maximising the between-class variance, the within class variance is minimised. Once

the threshold has been discovered, the output of the GP program for each value may be

decided and the fitness calculated as before. Since the process of finding the threshold is

unsupervised, GP is compelled to search only for useful discriminant functions.

Entropy Minimisation

Another approach, first proposed by Kapur [117], aims to identify an optimum value for t by

minimizing the entropy within the two class distributions defined by t. Distributions whose

entropy is low tend to be clustered together neatly. Again, t is chosen by evaluating through

a series of different values and choosing the value that yields the lowest entropy.

arg min
t∈{0,1,2,...255}

(H0 +H1)

Where H0 is the entropy of the distribution to the left of t, and H1 is the entropy of the

distribution to the right of t. They are calculated using the standard entropy equations:

H0 = −
t∑

i=0

pi

p0
log

pi

p0

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 78

H1 = −
N∑

i=t+1

pi

p1
log

pi

p1

Both of these techniques are well suited to interpreting the output of a binary GP classifier,

and do not appear to have been used for this purpose before. Having described a number of

representations for classifiers, it is now necessary to decide upon which is most appropriate

for the author’s classification system.

4.1.8 Choosing a Representation

Loveard and Ciesielski [114] published results comparing five GP representations: decision

trees, evidence accumulation (very similar to the “modi” program structure), binary decom-

position and static and dynamic range selection (DRS), on a series of classification bench-

marks. Their results showed that DRS yielded the best results when classifying a number of

datasets; these results are confirmed by the author’s own experiments, which are not shown

here. Other comparative investigations by GP authors are relatively few and far between. In

this section the author shall make some of his own, slightly different, investigations, starting

with a comparison between DRS and the threshold choosers borrowed from computer vision.

Although DRS is also applicable to multi-class classification, in the binary case it is worthw-

hile investigating its performance relative to the variance or entropy thresholding techniques,

which are each based on a theoretical framework for identifying an optimal threshold.

At this point, the author must beg forgiveness from the reader for presenting experiments

using a Genetic Programming system which has not yet been described! More details about

the GP set-up itself, including parameters and the function set, await in the following chapter.

For now let us assume that we have access to a suitable GP system, which simply allows us to

measure the difference between different classifier representations.

In the first experiment, GP was used to discover classifiers for five different public clas-

sification datasets concerned with binary classification. The datasets are described at the

beginning of this thesis, and will be used throughout the following chapters. Fifty classifiers

were evolved for each dataset using three different classification representations: DRS, Va-

riance and Entropy Thresholding. The average results on test data are shown in Figure 4.5.

The results show that the DRS representation chosen by Loveard can itself be outperformed

by both thresholding techniques on each of the five datasets. The differences between DRS

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 79

Figure 4.5: The average errors of three different automatic thresholding techniques on five

public datasets concerned with binary classification.

and the thresholding algorithms were statistically significant in each case. Although classi-

fiers using thresholding techniques need to check many different values of t in order to decide

upon the optimum threshold, they do not take substantially longer to evolve than with the

DRS technique. In any case, they will execute slightly more quickly folliwing evolution2. Of

the two thresholding techniques, entropy thresholding appears to outperform variance thre-

sholding in most cases, although the difference is not always significant. Interestingly, the two

thresholding techniques typically achieved worse training fitness than DRS, but were found to

be more accurate on test data: an indication that DRS was over-fitting the training samples.

Our quest for a suitable GP classifier would appear to be one step closer: for binary

problems entropy thresholding seems to produce the most accurate classifiers. Problems

in vision such as detection or background subtraction may be well suited to this kind of

representation.

However, it has already been stated that many (perhaps most) other tasks in vision are

multi-class in nature. Situations involving shape, gesture, digit, vehicle or face recognition
2The variance and entropy methods require only a single threshold comparison to make decisions, dynamic

range selection requires division and an array access to choose the class.

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 80

each require various different classes to be discriminated from each other. In order to develop

a classifier that is sufficiently generic to solve a variety of vision problems, the representation

must be capable of solving multi-class problems – which suggests the use of DRS. Although we

have seen that multi-class problems may be decomposed into a series of binary problems, the

thresholding techniques shown here suffer from limitations even in the binary situation (for

the same reason that Genetic Programming was chosen as the author’s preferred classification

technique). A single threshold contains an inherent assumption that two classes within the

data can inhabit clusters that can be distinguished by a single plane. In fact, it may well be

that the members within one arbitrarily-defined class actually belong to two or more distinct

clusters, or that the range is defined by two thresholds – in either case the thresholding

technique would produce worse results.

For these reasons the author’s classification system shall use both entropy thresholding

and DRS, dependent on the type of problem to be solved. Before discussing the classifica-

tion system as a whole, the author shall introduce various enhancements that improve the

accuracy, genericity and functionality of DRS.

4.2 Investigating Range Selection

Previous research has shown that DRS is the most suitable classification representation for

solving multi-class datasets. Nonetheless, the author has dedicated some time to analysis

and improvements to this technique. This section covers enhancements to DRS and presents

supporting results.

4.2.1 DRS Filling

The reader may have been wondering what becomes of those slots that are not touched by

any training data and are therefore not assigned a class label during training. Such slots are

incapable of producing a classification, so may reduce the ability of the DRS classifier to gene-

ralise, or indeed may cause the classifier to behave unreliably on seemingly straightforward

test data.

Using a synthetic dataset whose points are defined by two attributes, one can plot the

positions of training data and visualise the problem (see Figure 4.6). The figure shows that

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 81

GP can find a decision plane that divides the two classes, but while all the training data can

be classified correctly, some slots remain unassigned. The gaps left by unassigned slots may

cause an unseen sample to be classified unreliably, even if it is well within the normal range

for its class. The authors’ original solution was, for data falling into an unassigned slot, to

perform a local search until it found a neighbouring slot that was assigned a class, then to

return that class. As well as being inefficient, this method does not preserve any margin

of error between classes that may exist: returning an unassigned class may be a genuine

indication of ambiguity, which could be useful.

Figure 4.6: Unassigned slots in DRS can yield a classifier that behaves unreliably on test data

This author’s solution is to invoke a separate algorithm which deals with unassigned slots

by “filling them in”, while retaining any margin between the classes, a technique hereafter

referred to as fDRS. The author developed the following algorithm for this purpose:

f o r each s l o t i in s l o t s [] {

i f (s l o t i s unassigned) {

// see whether t h i s s l o t can be " f i l l e d in " to make the DRS t r a n s l a t o r more r e l i a b l e

before = f i r s t unassigned c l a s s before t h i s s l o t

a f t e r = f i r s t unassigned c l a s s a f t e r t h i s s l o t

// i f both before and a f t e r are the same , then " f i l l in " the gap

i f (before == a f t e r) {

s l o t s [i] = before ;

}

}

}

An important characteristic of a good classifier is its ability to generalise, or demonstrate

good performance on data that it has not encountered during training. The effect of this algo-

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 82

rithm is shown in Figure 4.7. By filling in the slots, the generalisation capabilities of the map

are increased, especially in circumstances where the training data are sparsely distributed or

the number of slots is high. The algorithm maintains the margin between the two classes (if

there is one), so that the unassigned result comes to indicate genuine ambiguity.

Figure 4.7: The result of the filling algorithm on the same program classification map

Although the algorithm appears to work quite well on our simple 2D example, does it

improve the generalisation capabilities of GP-based classifiers on real multidimensional data?

The algorithm was put to work on ten different commonly-used datasets. The results are

shown in Table 4.1, which shows the average test error both with and without the filling

algorithm running and the difference between the two expressed as a percentage. On data-

sets without separate test sets the appropriate k-fold cross validation technique was used to

estimate the error. Each result is the average over 25 runs.

The results in Table 4.1 show that the filling algorithm in fDRS has an exclusively positive

effect all the unseen portions of the datasets. Of course, this is not particularly surprising but

it does confirm that the choices made by the algorithm improve the program’s generality (the

training data fitness would not be affected). Although the difference is slight in some cases,

a paired T-test nonetheless shows the difference to be statistically significant in each case.

While the filling algorithm can be executed in a single pass on any program classification

map quickly, it can have a significant effect on the generalisation capability of the classifier,

which in the case of the Iris dataset, demonstrated a substantial improvement. The algorithm

has most effect on datasets whose samples are few or sparsely arranged.

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 83

Dataset Test Error % (DRS) Test Error % (fDRS) Percentage Improvement

BUPA 0.361 0.356 +1.24

Glass 0.423 0.415 +1.98

Heart 0.228 0.214 +6.07

Ionosphere 0.119 0.107 +10.57

Iris 0.127 0.065 +48.29

Pima 0.250 0.247 +1.29

SatImage 0.251 0.250 +0.11

Thyroid 0.027 0.026 +3.28

Vehicle 0.405 0.404 +0.45

WDBC 0.053 0.041 +23.61

Table 4.1: DRS Generalisation Improvement by using the DRS filling algorithm

4.2.2 Parameter Free DRS – “DRS2”

Since the fitness function is one dimensional, it is difficult to establish whether an indivi-

dual’s performance is hampered by its logic or by its inability to translate its decision onto

the expected class boundaries. Dynamic range selection partly removes the need to evolve

the latter, which reduces the complexity of the problem so that accurate individuals may be

evolved faster. However, “basic” dynamic range selection still assigns slots within a specific

range, for instance from −250 to +250. Since the output of the individual is to some extent

dependent on the magnitude of the feature vector values, the range may be restrictive: the

function may still need to incorporate a multiplier to ensure that values generally fall within

the given range. Even if the classifier’s output is within the range, it may not occupy the whole

range, so the number of effective slots may be smaller and the position of the thresholds may

be less accurate.

For these reasons the author implemented an extension upon fDRS, hereafter referred to

as DRS2, where the range itself is also dynamic, ranging from the lowest known output of the

individual to the highest. The removal of arbitrary thresholds may increase the genericity of

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 84

Dataset Test Error % (fDRS) Test Error % (DRS2) Result

BUPA 0.356 0.339 Not Significant

Glass 0.415 0.377 DRS2 Better

Heart 0.214 0.216 Not Significant

Ionosphere 0.107 0.104 Not Significant

Iris 0.068 0.064 Not Significant

Pima 0.247 0.245 Not Significant

SatImage 0.250 0.242 DRS2 Better

Thyroid 0.026 0.024 Not Significant

Vehicle 0.404 0.376 DRS2 Better

WDBC 0.043 0.038 DRS2 Better

Table 4.2: DRS Method Comparison, including the result of an unpaired samples T Test.

this approach, provided it can perform as well as the normal DRS method. This enables all

the available slots to play a part in the classification process and saves the individual having

to scale its output up or down to fall within an arbitrary range.

Results of experiments with the two DRS techniques on ten public data sets are displayed

in Table 4.2. The results show that the updated DRS technique, DRS2, is either competitive

with or superior to the previous algorithm on all occasions. It was also observed that the DRS

technique has slightly smaller program size, which may be explained by the individual not

needing to scale to an arbitrary range. As well as helping to ensure all slots have the chance to

be used, DRS2 does away with two parameters, which helps make it more readily applicable

to unknown tasks. In the following chapter the author shall present further attempts to rid

GP of various parameters.

4.2.3 Number of Slots

The final arbitrary parameter associated with a program classification map is the number of

slots to be used. Larger numbers of slots will permit the map to place thresholds in more

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 85

exact locations and fit the training data better. Excessively large numbers of slots may result

in only one unique instance fitting into each slot, at which point the DRS map would begin to

resemble a 1-nearest-neighbour algorithm and may become less able to generalise. Smaller

numbers of slots may improve the generalisation capabilities of the classifier, although too

few slots may not be enough to divide the classes adequately. It is therefore worthwhile to

investigate what constitutes “large” and “small” numbers of slots and see how slot numbers

affect the classifier’s performance and generalisation ability.

The original number of slots, 501, appears to be excessive for most situations. Providing

such a number of independently assignable slots may tempt the GP process to simply evolve

some means of dispersing the data samples across the whole range. This would yield increa-

singly good results on training data, but poor results on testing data. Experiments with more

modest numbers of slots indicate this trend – that increases in training fitness correspond to

decreases in unseen test fitness, a symptom of over-fitting.

The author’s first deed was to define the slot count not as an arbitrary value but as a

multiplier of the number of classes, a crude indicator of the problem’s complexity. An expe-

riment was devised to examine the differences between classifiers that use DRS for different

slot count multipliers. DRS2 was used as it guarantees that every slot a chance of being

used. Again, each classifier was evaluated against a number of benchmark datasets, with

each experiment repeated 25 times to determine the average error on each. The results of

the experiments are presented in Figure 4.8, in which the average fitness values are plotted

against the slot count for each dataset.

The figure shows that increased slot count ratios typically brought about a modest reduc-

tion in error on training data, although in some cases the difference was more substantial.

On the equivalent test data, by contrast, the error remains roughly at the same level for many

datasets, indicating that the classifier is over-fitting the training data. However, for some da-

tasets, the improvement on test data is substantial for increased values of the ratio. A casual

analysis of the graph shows that a ratio of 7 appears to satisfy the majority of datasets. Having

investigated a reasonable way of determining the slot size and chosen a value that seems to

deliver a good balance, the DRS technique may be regarded as parameter-free, which is a

positive step towards developing a generic learning component.

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 86

Figure 4.8: Fitness results for classifiers evolved using 5 different DRS slot ratios.

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 87

4.2.4 Confidence Estimation

Moving on towards more substantial adaptations of the DRS technique, there are certain

additions that can be made to increase its functionality, including giving some measure of

confidence. As we have seen, the majority of classification representations by GP produce

“hard” classifications, where a feature vector is assigned a class label without any indication

of the classifier’s certainty on the matter. This is adequate for some straightforward classifi-

cation problems, where there is a reasonable margin between classes, but is not so helpful in

other tasks where there is some degree of overlap between classes. Indeed, in some cases it

may be more appropriate to suggest more than one potential class for a given feature vector.

One example, to be tackled later in this thesis, is optical character recognition (OCR), which

is characterised by a reasonably large number of classes, some of which appear quite similar

to others. For such a problem, it is difficult to differentiate every class with a high degree

of certainty. In these situations it is more helpful to provide the likelihoods that the feature

vector belongs to each class. If, for some reason, the most likely character seems inappro-

priate, the system can fall back to the next most likely and so on. This would be the case if

the characters represented the postcode of an address, for example.

As we’ve seen so far, dynamic range selection returns only “hard” classifications. Inter-

estingly though, the algorithm does have access to information that can be used to compute

some measure of confidence. The reader will recall from page 75 that the class of a particular

slot is chosen by first identifying all the items of training data M that are allocated to the slot

by the GP program, then choosing among them the most popular class using a winner-takes-

all strategy. If M is entirely homogenous, that is to say that all members have the same class

c0, then the classifier can be reasonably certain that c0 is the most appropriate label to return.

However, if M is composed of, say, 6 instances of class c0 and 5 instances of class c1, then

the slot should still choose to label itself with c0 but it should not be so certain. If the slot

can express its confidence, it might state that, for an output within its range, there is a 6/11

chance that it is c0 and a 5/11 chance that it is c1. Therefore, confidence estimates for each

class can be computed according to the proportion of members from the winning class out of

the total number of hits the slot received. This is the basis behind the author’s second DRS

variant, referred to henceforth as DRS2C.

It is rather difficult to measure the effect of confidence estimation directly: it can not be

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 88

used explicitly but instead is made use of by subsequent processes, as was alluded to in the

postcode OCR example above. The system may be interested in the n most significant classes

for a particular feature, or may choose to consider only data points that can be classified with

a particular level of certainty. Each case may be task specific. In the next section we shall

investigate some post-classification techniques using GP that permit a quantitative assessment

of confidence estimates.

4.3 Classification Frameworks

Although the representation of evolved programs plays a key role in the learning of accurate

classifiers, there are nonetheless various different means of improving classification solutions,

which may include additional processing before, during or after the course of evolution. In

this section we shall look at three techniques intended to improve the accuracy and speed

with which classifiers may be evolved using GP.

4.3.1 Classifier Fusion

Depending on the course that evolution takes, different individual classifiers may devise com-

pletely different ways of solving a problem – much the same as humans! Genetic Program-

ming may be particularly prone to this, owing both to the relatively random manner in which

the search is conducted and the potentially large size of the solution space. Thus, while all

individuals may have equivalent overall fitnesses, they may make different sorts of mistakes

on different samples of training data. Although the accuracy of individual classifiers can-

not be improved after the evolutionary process has completed, if we ask several classifiers

to identify each data point, then we may reach a consensus opinion which is, on average,

more accurate than that of any of the individuals. This is the motivation behind multiple

classifier systems (and parliamentary democracies!) which aim to produce results which are

more robust than those of an individual classifier. Of course, it is important that individual

classifiers are independent from each other, so that their “fusion” together is meaningful: if

each of the classifiers always agree, then the technique is adding a computational burden wi-

thout its consensus providing offering any improvement in accuracy. A straightforward way

of ensuring sub classifiers are independent is to train each on different sections of the training

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 89

data, or to weight the training data differently for each classifier; [118].

There exist various approaches for combining classifiers. A couple of straightforward are

described briefly below.

Majority Vote

Given three or more binary “sub-classifiers”, each makes a decision with regard to a particular

input vector. Each classifier is allocated one “vote” with which to support its chosen class. The

class which receives the most votes overall is chosen and returned. This approach does not

require an estimate of confidence. As such, for the consensus to be meaningful, all sub-

classifiers should be equally certain, and all sub-classifiers should have roughly equivalent

accuracy.

A more rigorous approach extends the fusion technique to weight the overall vote of any

sub-classifier by its own fitness, such that the fitter classifiers have more say in the decision

making process.

Committee Voting

The majority technique is quite democratic, implementing as it does the ideal of “one decision

one vote”. However, in the world of classification not all decisions are created equal! Giving

equal weight to both certain and uncertain classifications may incorrectly reward the wrong

class. The author’s DRS2C technique makes it possible to quantify how certain a particular

vote is. Using the concept of confidence, it may be possible to reach fairer decisions using

so-called committee voting.

In the committee approach every class may be voted for by every sub-classifier. In contrast

to majority voting, each vote is weighted according to the classifier’s confidence. Thus each

sub-classifier still contributes the same amount, but is able to hedge its bets over different

classes when appropriate. This appears to be fairer, although it is reliant upon the confidence

estimates themselves being accurate.

Experiments

The two techniques provide a means of assessing whether confidence estimation can bring

about improvements in accuracy. It is also necessary to measure any improvement in accu-

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 90

racy that ensemble classification techniques in general can yield over single classifiers. Since

multiple classifier systems are inevitably more computationally expensive than single classi-

fiers, it is worthwhile to assess whether they improve accuracy sufficiently as to justify their

increased computational “cost”.

In order for the comparison to be fair, the fusion classifier should take the same amount

of time to evolve as a “single” classifier. In order to ensure this, the author devised a strategy

that makes use of island selection (see page 29), a technique which divides the population

into separate sub-populations or “islands” (in this case seven islands), within which evolution

can proceed partly or entirely independently. In this situation the islands were entirely inde-

pendent, permitting several classifiers to be evolved simultaneously. Each island was allocated

training data which were partitioned in a manner similar to that used in cross-validation –

randomly, but maintaining class distributions in each3. Thus each island would concentrate

on a different part of the training set, helping to ensure that the classifiers evolved were in-

dependent. In fact, this approach requires less computation, since it uses the same number of

individuals but each individual is evaluated against a smaller number of samples. The single

classifier was trained on all the data for the equivalent amount of time.

At the end of evolution, the best individual from each island was chosen, yielding 7 po-

tential members of the multiple classifier system. The same individuals were tested both in

majority voting “mode” and committee voting “mode’, permitting direct comparisons to be

made. As before, the experiment was repeated 25 times; results are averages of performance

on test data. The results on test data are summarised in Figure 4.9.

The results show that fusion techniques broadly outperformed equivalent single classifiers,

sometimes by a substantial margin; particularly so on some of the larger multi-class datasets

(PenDigits and SatImage). The difference between confidence and majority is most marked

on the PenDigits dataset, which is concerned with the recognition of 10 digits and is the

kind of task that motivated the development of a DRS variant that could produce confidence

estimates. On the eight occasions where the difference between the fusion techniques were

significantly different, the committee voting scheme produced the best results on five. This
3This was done by allocating all the training samples into bins, one for each class. Each bin was then shuffled,

with one sample taken out of each bin for each partition in round robin fashion, until all bins were empty. This

is a fair way of ensuring that each partition has a roughly equal class distribution, and have as similar sizes as

possible.

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 91

Figure 4.9: Fitness results for classifiers evolved by regular GP, then with those combined in

Majority and Committee Voting scenarios.

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 92

would appear to show that, for some datasets, the additional information provided by the

confidence estimate can make a significant contribution to the accuracy of the system.

The figure also shows the results when the majority and committee classifiers were exe-

cuted in two sub-modes: one giving equal weight to each classifier and the other weighting

the classifier’s votes by its fitness, so that fitter classifiers would have a proportionally larger

vote than less fit classifiers. The chart shows that this addition can make a modest improve-

ment to results from the majority fusion technique, but generally yields little difference for

the committee ensemble.

It is difficult to assess which committee technique is “better” overall from these results.

Langdon [119] pointed out that4:

“There is no single, best combination scheme nor any unequivocal relationship

between the accuracy of a multiple classifier system and the individual constituent

classifiers.”

W. B. Langdon

Fortunately it is not necessary to make such an assessment – since the author’s multiple clas-

sifier system can operate in either mode, at the end of the run both can be tried in order to

find the better one for a given problem5. The reader may also be wondering what the best

committee size might be on each occasion – the author’s software implements an approach

whereby the seven classifiers are used in all different permutations in order to discover the

most appropriate “sub-committee”. This process takes a couple of seconds to complete, but

need only be performed once per evolutionary run. The author would claim to have produ-

ced a classifier fusion technique which is sufficiently flexible as to try different classification

techniques, while requiring no more evolution time than a single GP classifier.

4.3.2 Classifier Evolution by Partial Solutions (PS)

The author’s second approach aimed to address the time taken to evolve classifiers in a general

sense. Inspired by the boosting of weak classifiers in [89] and classifier systems in general, the

author developed a scheme in which GP programs are evolved as simple expressions which
4In fact Langdon used Genetic Programming to develop the fusion technique itself.
5However, it is acknowledged by the author that there are other classifier fusion techniques in addition to

these.

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 93

Figure 4.10: GP by Partial Solutions creates a strong classifier from a number of smaller

solutions.

solve only part of the overall solution and are thus termed partial solutions. As each partial

solution is not expected to correctly classify every sample, the programs are small and so may

be discovered and evolved quickly.

As useful partial solutions are identified they are added to a separate, “strong” classifier

which exists outside of the GP system (see Figure 4.10). A useful partial solution is one that

can correctly classify parts of the training data that have not been solved already. Following

the discovery of such a solution, the problem is subsequently redefined to include only the

remaining training data. This removes the need for already-solved data to be continuously

re-evaluated, as is the case with standard GP, and also ensures that the “knowledge” of the

partial solution is protected. This prevents regression in a more granular way than does

elitism (page 35) The system continues to evolve partial solutions until the strong classifier is

capable of a certain level of accuracy.

Fitness Criteria The fitness of a partiaul solution with regard to a particular class c is cal-

culated by dividing TPc, the number of times it correctly labelled a sample with class c, by

the total number of training samples N added to the number of missed classifications of c

samples, FPc, as shown below:

fitnessc =
αTPc

N + βFPc

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 94

The factors α and β allows the fitness measure to be adjusted to affect the individuals’ sensi-

tivity or specificity.

But what is c? Each partial solution is treated as a binary classifier with respect to a class

X. X is chosen by evaluating the partial solution with respect to the set of classes C in the

task, and choosing the class for which it has best fitness:

X = arg max
c∈C

fitnessc

This is a brute force approach but ensures that the logic and interpretation are kept separate.

Adding to the Strong Classifier Fitness is used to drive the evolution of partial solutions.

However, in order to decide whether a partial solution should be added to the strong classifier

– that is to say that it is able to solve a new part of the overall solution – four separate criteria

were devised:

1. Does the partial solution discriminate? If the solution returns only ‘true’ or only ‘false’

it is not capable of making decisions. GP often evolves this kind of lazy solution in

response to training data that are weighted in favour of one particular class. GP by

partial solutions avoids this form of code bloat.

2. Is the partial solution unique? If the classifier returns the same results for every instance

as another partial solution that has already been chosen, then this classifier is usually

discarded6.

3. Does the partial solution return ‘true’ for data that have not yet been solved? Each item of

training data has a field indicating whether it has already been solved. Each candidate

partial solution has to identify at least one instance that has not yet been solved in order

to be used.

4. Does the partial solution return ‘false’ for data in other classes? If a binary classifier re-

turns ‘true’ for instances of one class, it should return ‘false’ for all instances of other

classes. However, it may return ‘true’ mistakenly for other classes provided that they

have already been completely solved by other partial solutions. We describe this solu-

tion as being dependent on the other classes.
6Unless it is smaller or less dependent than the existing one, in which case the existing solution is replaced.

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 95

If the partial solution matches all these criteria, it is added to the “strong” classifier. Seve-

ral partial solutions may be discovered during the course of a single generation – another

characteristic which makes GP by partial solutions faster.

A version of island selection is used with crossover only occurring between parents with

the same value of X, which are more likely to share some similarity.

The strong classifier produces classifications by evaluating each of its partial solutions in

turn (starting with the first added). If the partial solution returns ‘true’ for a given input

vector, the class C associated with the partial solution is returned, otherwise the next partial

solution is executed, and so forth.

Experiments

A series of experiments were conducted by the author in order to explore the practicality

and effectiveness of the partial solutions approach. It was found that for certain problems,

partial solutions could deliver more accurate solutions an order of magnitude more quickly

than could conventional GP.

However, it was observed that, for certain problems with large amounts of training data,

the system generated too many partial solutions. Furthermore, the author was uneasy about

the manner in which partial solutions could be added to the strong classifier but not changed

or refined. As each partial solution is selected, the data that it solves correctly are removed

from the training data, so the system is incapable of replacing it with a later, better indivi-

dual which may be able to solve more instances of the same kind data and thus offer better

generalisation capabilities.

There is nothing to say that partial solutions cannot find a small set of generic solutions

instead of a large set of over-fitted solutions, but there is an inherent randomness in the

process.

4.3.3 Intelligent Classification System (ICS)

We have seen that as individuals get better, it becomes more tricky to improve them without

breaking something, particularly when the crossover/mutation operators have essentially no

idea what parts of the tree are useful and which parts are under-performing. This is a charac-

teristic of the so-called stability-plasticity dilemma, which has been demonstrated empirically

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 96

by Banzhaf [120]. In essence, learning by GP becomes more difficult as evolution progresses.

The concept of Partial Solutions is to protect useful components as much as possible to miti-

gate this problem. Still, the randomness of Partial Solutions caused the author some degree

of unease. For this reason, a more “careful” classification scheme was developed which ad-

dresses this issue while still taking advantage of the underlying concept of partial solutions.

It also makes use of the other innovations described in this chapter.

Rather than split the problem into pieces in a haphazard way, the author’s third classi-

fication system, termed “Intelligent Classification System” (ICS), divides the problem in a

repeatable and logical way. “Intelligent” refers to the way in which the system attempts to

replicate the way a human would approach a problem – it performs experiments along the

way and otherwise attempts to choose the best parameters and approaches for particular

problems.

In general, ICS initiates a straightforward process of “one-vs-all” binary decomposition on

the training data in order to split it into sub-tasks. Each sub-task is evaluated in order to

assess its difficulty. A classifier for each sub-task is then learned, starting with the easiest. The

classifiers are then assembled into a single multi-class classifier, of the type shown in Figure

4.11. A process of refinement then initiates in order to improve the classifier where possible.

The means by which ICS goes about these tasks will now be covered in more detail.

The Choice of Binary Decomposition

Before continuing further, it is worthwhile considering whether binary decomposition is a

better means of producing accurate classifiers than evolving a single multi-class classifier.

An experiment was run to assess the difference between the two techniques, given an equal

time to develop a classifier in each case. The results are shown in Figure 4.12, which shows

that the binary decomposition approach delivers lower accuracy than does the single multi-

class classifier, on average. Although the difference was not statistically significant on the

Iris dataset, for the other 4 cases, the binary decomposition approach produced significantly

more accurate results.

Of course, if the problem is already binary it cannot be split up further. In this case ICS uses

the entropy and variance thresholding representations (discussed earlier in Section 4.1.7),

which were shown to be superior to DRS in binary situations. For multi-class problems, the

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 97

Figure 4.11: Binary Decomposition of a multi-class Problem. Each class may be returned by

one sub-classifier. If the classifier returns a negative result, the next classifier in the list is

tried and so on.

Figure 4.12: Binary Decomposition vs Multi-class Classification.

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 98

algorithm must develop one classifier per class, with each classifier evolved to use the author’s

DRS2C representation. Although these classifiers are also binary in nature, experiments reveal

that range selection outperforms entropy and variance thresholding here, as the classifier may

need to delimit a particular class with more than one threshold.

If provided with more than one CPU, ICS typically attempts several GP runs per class in

its search for a classifier; variance and entropy thresholding are used alternately.

Estimating Difficulty

The reader is referred once more to Figure 4.11. The multi-class classifier consists of a chain

of binary classifiers. If the “A” classifier returns true then “A” is returned, otherwise the “B”

classifier has an opportunity to classify the data and so forth. There are two observations that

one can make from this architecture. The first is that the first classifier in the chain should

be the most accurate, as errors will carry forward. The author submits that the eventual

accuracy of a classifier is proportional to the difficulty of the task. Thus, if we can estimate or

measure the difficulty of classifying each class beforehand, we can organise the binary chain

in a manner that yields fewer errors.

The second observation of this kind of architecture is that if classifier “A” returns false for

whatever reason, there is no further opportunity for samples of “A” to be identified. Following

the evolution of a classifier for “A”, we can remove all the “A” samples from training data. This

has two effects: the training time for subsequent processes of evolution is reduced and later

problems become marginally easier to solve. This is the essential motivation behind partial

solutions, except in this instance the partitions are chosen in a more systematic manner.

The first stage in ICS, therefore, is to estimate the “difficulty” of each component binary

problem, so that the order of evolution can be established. This is performed by running a k-

nearest-neighbour classifier on each problem and assessing its output on a subset of training

data reserved for validation. Since k-nearest-neighbour requires no training as such, this step

can be performed relatively quickly. The error of the k-NN classifier on each class is assumed

to be indicative of class confusion. Classes for which k-NN achieved the lowest error are

executed first, with the expectation that some of the class confusion will be alleviated as the

training data is reduced.

The reader may be wondering whether k-nearest neighbour is an ideal predictor of GP

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 99

Figure 4.13: The effect of the author’s ICS technique vs standard binary decomposition. “No

class removal” indicates binary decomposition in which the training set is not adjusted in

any way following evolution of classifiers. In Random/Easiest/Hardest, “spare” classes are

removed – this appears to have an exclusively positive impact on training data. Of the three

ordering techniques, ordering by easiest yields the lowest error.

performance. Indeed, the k-NN algorithm is an example of “lazy learning”, where there is

essentially no training procedure beyond committing sample data to memory. GP, by contrast,

evolves an analytical solution to the problem, so the data that confuse k-NN may not be a

problem for GP and vice versa. In order to assess the impact of class ordering, the author

devised a series of experiments, in which the classes were ordered by the predicted “easiest”,

then “hardest” and randomly. These were each compared to “standard” binary decomposition,

which did not implement any class removal. The hypothesis is that if the k-NN classifier’s

performance is a predictor of GP performance, then the runs for which classes were ordered

by easiest tasks should return the lowest error. Ordering classes the opposite way, by the

hardest, should yield worse performance. Finally the classes were ordered randomly to make

an additional comparison. The average results over the course of 25 runs each are shown in

Figure 4.13.

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 100

Figure 4.14: ICS tries a number of different ideas for each problem. It is able to make use

of an arbitrary number of computers to do so. Here is ICS preparing some of the results for

Chapter 5.

The results show that the ordering of classes does indeed have a significant effect and

that ordering by the hardest as opposed to easiest has a negative effect, indicating that the

ordering derived from the k-NN algorithm is not arbitrary. There may, of course, be ordering

methods which yield even better results than this method7. It is also apparent that class remo-

val yields more accurate solutions, since each GP classifier can concentrate on a more specific

set of training data without being confused by irrelevant data. This also results the most be-

neficial aspect of this classification system: in contrast to most GP systems the rate of learning

accelerates during evolution. Solutions to vision problems can generally be discovered within

minutes, rather than hours.

Other Features

To return to the description of ICS, following the estimation of class difficulties, a solution to

each component problem is then evolved in turn. Each run is repeated several times; the best

classifier is chosen. Different parameter combinations are tried for different runs (see Chapter
7Indeed it would be interesting for the computer to learn the best orderings itself. This is not as intractable

as it seems, if the classifier accuracy for every ordering combination is computed (which would admittedly take

some time), then a set of training data could be established correlating the orderings and their observed fitness.

Another GP process could then be run to find rules that lead to the most appropriate ordering.

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 101

5) in the cases where the “best” parameter is difficult to establish. Such experimentation is a

bit indulgent and can lengthen the evolutionary process. To permit classifiers to be evolved

in a timely fashion, the author’s GP toolkit is able to distribute processing over an arbitrary

number of computers on the local network or Internet, each of which can be readily converted

into a GP server by downloading and running a small program. ICS evolves both single and

ensemble classifiers and chooses the one which solves the problem most effectively. The au-

thor’s mechanism permits different ensembles using different sub-committees and strategies

to be discovered automatically.

Refinement

After all of the binary classifiers have been evolved, ICS evaluates each one and generates

a class confusion matrix in order to find which kinds of classes are most easily confused

(such as “0” and “O” in an OCR-like task) and initiates the evolution of “refinements”, which

help improve accuracy, either by reducing false positives or false negatives. Refinements

are executed in order of their potential improvement to fitness. The refinement procedure

continues until the user tires, or further GP runs fail to deliver any more improvements, at

which point the system completes its task.

ICS nearly qualifies as a one-click classifier learning system. The user needs only to specify

the training and testing data for the classifier to be evolved, select how many CPUs to use and

suggest how long the classifier has to develop a solution. The classification then proceeds in

a completely automated fashion.

4.4 Conclusions

This chapter has described a number of representations for performing classification using Ge-

netic Programming and justified the author’s usage of two: entropy thresholding and dynamic

range selection. The author has discussed the relative pros and cons of each and presented a

number of ideas intended to improve the accuracy and applicability of DRS in particular.

Two different, novel approaches have been proposed: the faster partial solutions method

and the slightly slower but possibly more accurate approach which attempts to evolve clas-

sifiers in a pseudo-intelligent manner. Although the concept behind both of these methods

CHAPTER 4. CLASSIFICATION BY GENETIC PROGRAMMING 102

is to break the problem down into smaller pieces (as humans do), they go about it in very

different ways. Partial solutions is all about speed while ICS concerns itself with accuracy

and careful refinement. Partial Solutions is a good approach for “rapid prototyping”, to see

whether a set of data can be solved using GP. ICS produces the equivalent of a final product,

where accuracy is of the most importance.

The following chapter will describe the author’s Genetic Programming toolkit in more

detail and explain some of the other means by which GP can be rendered into parameter-free

learning tool. The next chapter shall also seek to validate the author’s classification system by

comparing it to an established evolutionary computation toolkit, to results obtained by other

GP researchers and the best works reported by other pattern recognition researchers.

Chapter 5

Validating the Evolved Learning

System

“Name the greatest of all inventors. Accidents.”

Mark Twain

Rubber in its natural form is not particularly useful. In cold conditions it is brittle and cracks,

yet in hotter climates it readily melts. It was the accidental spillage of sulphur onto raw rubber

by Charles Goodyear in 1839 that led to the discovery of vulcanisation, the process by which

rubber can be rendered into a stable consistency1. Similarly, the recipe for Coca Cola was

formulated inadvertently by John Pemberton while he tried to concoct a pain relief remedy2.

In 1897, Ernest Duchesne submitted his thesis describing his discovery, again by accident,

that certain moulds would kill bacteria. Although his research went largely unnoticed at the

time, it was the first documented discovery of antibiotics3. While science certainly does not

progress through accidental discovery alone, chance happenings like these can suggest ave-

nues of exploration that had not previously been considered. The inherent randomness and

abstract nature of Genetic Programming (GP) would appear to make it quite good at simu-

lating creativity, but is this enough for it to compete with the best of human-written pattern

recognition algorithms? The goal of this chapter is to make several empirical comparisons in

order to answer this question.
1Goodyear was unable to patent his invention and died penniless.
2Pemberton later sold the recipe for $900 and died penniless.
3Duchesne later died penniless, ironically from Tuberculosis, which his own discovery could have treated.

103

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 104

GP has already been recognised as an automatic innovator in fields outside of pattern

recognition. According to John Koza [121], whose seminal books on GP continue to dominate

the literature, there are at least thirty six recorded instances where GP has produced human

competitive solutions, mainly within the domain of evolved electronics. Twenty one of these

instances either infringe or duplicate functionality of previously patented 20th/21st Century

inventions, and two are sufficiently novel as to be patentable in their own right.

In the latter part of this chapter, the author’s GP toolkit will be compared to a standard GP

implementation, then to other results attained using GP researchers in general, and finally

to a range of other popular classification techniques. This chapter begins, however, with a

more thorough description of the author’s GP system, an enumeration of its novel features,

and a discussion of how a genetic learning system, often plagued by the need to discover

problem-specific parameters, can be adapted into a “black-box” generic problem solver.

5.1 Building a GP System

Although the author’s initial experiments made use of ECJ [6], a popular but cumbersome

open-source GP toolkit, it became apparent that in order to experiment with changes to the

GP system itself, it would be worthwhile to develop the GP system from scratch4. This toolkit

(named SXGP, after its alma mater) is specifically designed for evolving solutions to problems

involving vision.

Being practically minded, the author also sought to develop a toolkit whose evolved solu-

tions could easily be put to work within applications. Since the objective is to develop vision

systems using two or more evolved components, it is crucial that each component be easily

deployed since the system cannot be evaluated purely within the confines of the GP environ-

ment. ECJ is rather difficult to integrate into other software (since each run is usually defined

by a configuration file, rather than programmatically) and does not readily output indivi-

duals as for use in other programs5. The author’s toolkit, SXGP, can be instantiated though

a straightforward programming interface, and can deploy programs in various different ways

so that they may be put to work on real problems.
4Of course, it is also more satisfying than to use other peoples’ code!
5ECJ outputs individuals using LISP syntax. The author has written an extension to output ECJ individuals in

Java [122].

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 105

The various components that make up a Genetic Programming toolkit were described in

detail in Chapter 2. There are numerous choices that one can make for each component,

so two Genetic Programming implementations can actually differ quite significantly. Thus,

before the comparisons commence, it is necessary to describe SXGP in more detail.

5.1.1 Specification

The main components of the author’s system are specified in Table 5.1.

Component Method Where Described

Representation Tree Page 14

Population Builder Ramped Half and Half Page 17

Selection Method Tournament Selection Page 28

Generation Gap Generational Page 37

Fitness Function Variable Page 122

Elitism Enabled Page 35

Genetic Operators Crossover and Mutation Pages 30, 34

Population Size Variable Page 112

Generations Variable Page 112

Function Nodes Task Dependent Page 120

Terminal Nodes Problem Dependent

Learning Paradigm Supervised

Island Selection Utilised Page 29

Table 5.1: Specification of SXGP, the author’s Genetic Programming Toolkit

5.1.2 Implementation Notes

SXGP is implemented in Java, a language well suited to the development of abstract tools.

Java also offers excellent libraries for image acquisition, networking and multi-threading.

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 106

The cross platform nature of Java makes it particularly suitable for distributing the Genetic

Programming process over a number of CPUs, a feature also implemented in SXGP.

Results by a performance profiler reveals a significant amount of computational time ex-

pended by the Genetic Programming process is actually devoted to the copying of individuals,

which is necessary to ensure that offspring are separate instances from their parents6. Al-

though the author originally used a flexible copying operator which serialises an object into a

stream and then re-instantiates it as a new instance, this was found to be a significant bottle-

neck. Instead, each object implements its own cloning method which permits the process to

proceed much more quickly, while maintaining the requirement to perform “deep cloning”7.

We shall look at other means of enhancing performance throughout the course of this

thesis.

5.1.3 Novel Features

SXGP comprises a number of features that are novel. Each is discussed briefly below.

Strong-er Typing Depending on the set of functions used and the maximum tree size per-

mitted, the program search space can be very large. While the essential purpose of any genetic

learning system is to discover good solutions to a problem without resorting to an exhaustive

evaluation of the search space, it is nonetheless desirable to ensure the search space itself is

as small as possible.

One way of reducing the program space is through the use of strong typing, where the tree

builder, which is responsible for constructing the programs (and new mutations), is constrai-

ned to connect only nodes which make semantic sense. For instance, the LessThan operator,

which returns a boolean value, should not be supplied as an argument to the division operator

– execution could lead to divide-by-zero errors and a rather inconsistent logic. As was men-

tioned in Chapter 3, Montana[15] implemented a means of strong typing for GP systems by

introducing the notion of a return type, which would have to be matched with each node’s ar-

gument types, as is the case in the strongly-typed programming languages. As an example the

6Otherwise the later actions of genetic operators on parents would also affect the offspring.
7Deep cloning refers to copying both an instance and all of its class members; shallow cloning will clone the

instance, but will not copy class members. In GP, individuals must be completely separate instances, otherwise

the genetic operators may affect more than one individual at a time.

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 107

add operator should insist that both its arguments have an numeric return type; the operator

itself will also return a numeric value.

However, Montana’s types, such as numeric or boolean, have the disadvantage of being too

generic. If one is looking for a count for a loop, for instance, a floating point number is not

necessarily appropriate – it is better to involve an integer. However, if one defines “integer” as

a new type to accommodate this requirement, then the arithmetic operators would no longer

accept it, since it cannot be both numeric and an integer. Essentially a node should be able to

return more than one type, for instance to say that it returns a number that is also an integer:

indicating a hierarchy of inheritance among different types. SXGP includes this flexibility,

where each node may implement multiple return types. The return type of a node is instead

returned as an array of different return types. If any of these match the required argument of

a node, then it is deemed acceptable. This permits the system to make use of more complex

structures while producing fewer trees that don’t make semantic sense.

Tree Checking The author’s stronger-typing framework extends further. Although GP is

capable of evolving many means of procrastination, the stronger-typing approach still permits

the creation of “useless” code that performs no function. Code may be considered useless if

it is never executed, or if it always returns the same value regardless of input. The former is

usually to be found in branches of if-statements whose condition is accidentally constant.

The tree builder in the author’s GP toolkit attempts to avoid creating such code by follo-

wing additional criteria, which may be created for specific nodes. For instance comparative

nodes (lessThan, moreThan, between, equals) additionally insist that at least one of the child

nodes in the sub-tree beneath each be some kind of image feature (a separate sub-type, based

on the numeric type). This ensures that every sub-tree has the potential to perform some

useful processing8. This restriction also reduces the size of the search space.

The system also discards those programs that do not make use of features at all. GP

programs, if left unchecked, may take advantage of the a priori probabilities of solutions and

simply return the most popular!
8Although it is still not perfect: the lessThan function could compare a feature whose return values are in the

range 0-255 to a value of 1000, which would again always return the same value. However, SXGP’s automatic

optimisation mechanism will remove this kind of code.

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 108

Automatic Optimisation The author’s GP system automatically optimises the best indivi-

dual at the end of evolution, in order to make it more suitable for deployment in the compu-

ter vision task for which efficiency is always a criterion. After running the individual on a set

of training data, the system collects statistics about each node, then removes nodes that are

never used and replaces nodes that always return the same value with constants.

Instant Deployment Solutions evolved by SXGP can be deployed for use in other applica-

tions immediately, in two modes:

GP Tree The GP tree is used as-is, so the program can be used immediately. The SXGP tree

class itself is serializable, which means it can take advantage of the Java mechanism to

be readily saved to disk and reinstantiated later, or on different machines. All important

information, including the status of the individual’s program classification map, are

saved. Wrapper classes permit different GP trees to be applied to different tasks in

vision, such as feature detection or object classification. However, since the program is

executed in an interpreted manner, the program will not run as efficiently as possible.

Compiled Java The GP tree is first converted into Java source code, then compiled automa-

tically. This kind of program will run significantly faster, but requires the right libraries

to be linked, and for the user to have a Java Development Kit installed on their com-

puter for compilation to proceed. The process of deploying individuals for use in vision

systems is discussed in greater depth in Chapter 6.

Live Evaluation As well as providing a graphical interface to display the status of the evo-

lutionary system, the effect of the current best GP program on images is displayed live by

the user during evolution. This enables the user to assess how well the evolved solution is

working and generalising, and provides an insight into how difficult a feat of image proces-

sing is: the user may subsequently tailor the training set to incorporate characteristics that

apparently were not emphasised sufficiently in initial training data.

5.1.4 Parameter Choices for a Generic System

One can think of a Genetic Programming system as a whole “world” in which the birth,

life and death of thousands of individuals are simulated by a series of sub-components. As

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 109

such, one of the problems of developing solutions with GP is the sheer number of parameters

required by each component: there are parameters for the minimum and maximum initial

depth of individuals, the kind of tree builder to use, the population size, the number of

generations, choice of fitness function, and so on. Moreover, it is difficult to assess the true

effect of any parameter since all the components are rather inter-related. The work published

by other researchers indicates that parameter tuning and experimentation is often called for,

which doesn’t bode well for a supposedly generic problem solver. In order to maintain the

aspiration of a generic system, it is worthwhile to consider the research and theory behind

different parameter choices in order to establish a set of parameters that work well on a wide

range of problems. Some of these are discussed below.

Genetic Operators A standard breeding pipeline involving crossover, mutation and repro-

duction (copying) operators is used in SXGP: each new individual in the new population is

produced from one or more “parents” using one of the above operators. The number of in-

dividuals generated by each operator is usually determined by allocating a given percentage

to each. The optimal “blend” of the learning operators crossover and mutation is something

not all researchers agree on. Koza himself used no mutation, preferring a 100% crossover

pipeline9. Other researchers [123] have shown that Genetic Programming can proceed wi-

thout using crossover at all, by using 100% mutation10. In fact, provided that there is a

suitable means of selection, and that there is some genetic search proceeding, the GP process

is remarkably robust.

Work by Luke and Spector [124] aimed to establish a way forward through systematic

comparisons of evolution using different proportions of crossover and mutation. They found

that, in general, evolution using only crossover was slightly more successful than evolution

using only mutation, but that the difference was not particularly substantial. Mutation was

shown to be slightly advantageous in certain situations where the population size was small.

In general the authors could not find an ideal blend of crossover and mutation that would

yield better results consistently. From the author’s point of view this is a good thing – it isn’t
9Koza was keen to prove that GP learning was not random search.

10The author’s own toolkit, SXGP, for several months featured a silent bug in which crossover-generated in-

dividuals were not added to the new population. The problem was only noticed later — the bug had had little

apparent effect on the results by GP, much to the embarrassment of the author.

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 110

necessary to tune the operator rates to different problems.

Given these observations, the author used a reasonably “standard” set of values for all

tasks, making use of both operators, in which crossover produces about 75% of the new

population; mutation 20%; the remainder obtained simply by replication. Making use of both

operators is desirable, at least from a theoretical point of view, since each has its own specific

advantages. Crossover helps to exchange useful building blocks between good parents, while

mutation can help maintain diversity by re-introducing sub-trees that might otherwise fall out

of the population.

Tournament Size Genetic Programming is distinguished from random search by its bias

toward more successful individuals, which is achieved through the evaluation of individuals’

performance (see Section 5.2) and subsequent selection of “good” individuals to produce

next generation. The most widely used selection technique, tournament selection, picks t

individuals at random from the population to form a “tournament”, from which the individual

with the best fitness score is selected. Larger tournament sizes t will increase the selective

pressure, albeit at the expense of variability. Other selection methods were discussed on page

25.

During their comprehensive analysis of a series of selection methods, Blickle and Thiele

[125] concluded that Tournament Selection produced the smallest loss in diversity and the

highest selection variance in comparison to fitness-proportional and ranking selection. For

this reason, and the reasons presented above, Tournament Selection was chosen as the de

facto selection method in the author’s Genetic Programming environment.

Motoki [126] calculated that, given a population of size N , and tournament size t, the

expected loss of diversity DT in tournament selection would be:

DT =
1
N

N∑
k=1

(
1− kt − (k − 1)t

N t

)N

Interestingly, this formula predicts that the loss of diversity initially grows rapidly but becomes

relatively static in populations with more than 8 individuals. This means that we can select a

value of t which should not require specific tuning for each individual experiment, especially

if using a fixed population size. When t = 20, the formula predicts that around 82% of

the diversity of the population is lost in any given generation, which may significantly affect

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 111

Figure 5.1: The average redundancy of a population over the course of 50 generations, for

different tournament sizes.

the ability of the evolutionary algorithm to explore the seearch space. At the lowest practical

value, when t = 2, the loss is about 43% per generation. Low selection pressures are generally

suggested in GP practice and successful results have been achieved using low values [29].

But how low should the selection pressure be? Although the Genetic Algorithm com-

munity has traditionally used a tournament size t = 2 which preserves as much diversity

as possible within the population while maintaining some degree of selective pressure, GP

researchers generally use t = 7 as this is thought to instill higher selective pressure on the

population, tending to improve the learning rate during the limited time of a GP run11. Howe-

ver, higher values of t, will cause the same parents to be selected more often, which reduces

the variability within the population and increases the redundancy. An experiment measuring

the population redundancy is shown in Figure 5.1, which shows a substantial difference in

population redundancy between t = 2 selection and t = 7 selection.

The author has conducted a number of comparative experiments using the range of tour-

nament sizes described above, the result of which is that no significant difference could be

detected in training accuracy, evolution time or average population size. Neither was it ob-

served that the performance of runs with different tournament sizes was any more variable
11Genetic Algorithms are potentially faster to run than GP, so can be indulged in evaluating more generations.

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 112

for different values of t. As it is difficult to decide exactly which is the best parameter, one of

the author’s classification schemes errs on the safe side by using different sizes for different

runs, and in general SXGP uses the more obvious compromise: a tournament size of t = 5.

Population Size The computational expense of an evolutionary run is usually proportional

to the product of two parameters which specify the breadth and length of the search: namely

the population size and generation count. Populations are used by evolutionary learning

algorithms to store a diverse base of knowledge that can be built upon. Although the degree

of selectivity employed has a significant effect on the variability within a population, such

variability can only be stored within a population of solutions of sufficient size. While there

is clearly a lower bound for the population size, there is no practical upper bound, since the

search space is potentially enormous.

An impression of the size of the search space can be attained through a brief example. If

one imagines a GP system which uses n functions each of arity (number of arguments taken

by the function) 2, and maximum tree depth D, whose individuals are generated by a FULL

tree builder (see page 17), the search space, or number of potential programs is:

size = n

D−1∑
i=0

2i



From the exponential nature of this calculation, it can be seen that modest increases in

the number of functions or the tree depth will quickly yield spectacularly large search spaces.

The addition of continuous random constants can increase the size of the search space to even

more gigantic proportions, which in any case is such that the GP system will never be able

to explore it comprehensively. Given that the population size can only ever be a tiny fraction

of the size of the search space, its choice might be considered relatively arbitrary: it doesn’t

appear necessary to tune for individual problems. Many GP researchers settle on a population

size of 500. Nonetheless, the use of the ramped-half-and-half tree builder (see page 17)

introduces a significant level of duplication into the population (for reasons explained later),

which is alleviated in SXGP using fitness caching (see page 165).

Aside from problems of duplication, genetic populations have a tendency to become domi-

nated by a particular solution, a phenomenon described as premature convergence. Various

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 113

“convergence manipulation” protocols exist to avoid the homogenisation of a population, in-

cluding island selection, discussed on page 29, but each introduces extra parameters to the

system. Murphy and Ryan [127] suggested the use of a different tournament selection algo-

rithm which would repel individuals which shared a similar ancestry. The algorithm starts

by selecting an individual at random12, then searching for an appropriate partner to parti-

cipate in crossover in a “repulsion tournament”13. The partner chosen is the one with the

least shared ancestors with the first individual. Thus the crossover operator is forced to conti-

nue exploring previously uncharted areas of the search space, while ensuring the population

maintains a higher degree of diversity. Hereditary repulsion was implemented on the author’s

toolkit; comparative results are shown in Figure 5.2, which shows that the technique can both

decrease and increase the average error.

5.1.5 Tree Builder Parameter Choices

As we saw in Chapter 2, there are two means of producing trees in Genetic Programming, the

FULL builder, which generates “full” trees, in which every branch extends to the maximum

depth D, and the GROW builder, which extends branches until the point where a leaf node

terminates it. Because the FULL builder limits the number of tree structures that can be used,

and the GROW builder will not always produce trees of the full size, most GP practitioners use

the ramped-half-and-half algorithm to generate the population, which uses each technique

half the time, usually for each of a range of depths 1, 2, ..., D. The author identifies two

problems with this technique, which are dealt with in this section.

The first problem relates to redundancy, or the presence of identical individuals, within

the population. Redundancy reduces the variability within the population, which may affect

the rate of learning, and prevents the search space from being explored as thoroughly as

possible.

Here is a simple calculation. Suppose the FULL tree builder is called upon to construct a

tree of depth D, using F different function nodes and T different terminal nodes. We can

calculate how many leaves (terminals) the tree will use easily (assuming that each node has
12This is the protocol by Murphy and Ryan[127], in SXGP it starts by selecting an individual using tournament

selection as normal, which seems to be rather more sensible.
13This author feels the chosen term for this techniques, “hereditary repulsion”, is something of a missed oppor-

tunity; “incest police” is rather more enjoyable terminology.

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 114

Figure 5.2: The effect of Murphy and Ryan’s Hereditary Repulsion technique on average

classifier accuracy.

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 115

arity 2):

terminals = 2D

The total number of non-leaf (function) nodes in a binary tree will be:

functions =
D−1∑
d=0

2d

The number of “parent” functions at depth D − 1, who each have two terminals as children:

parentfunctions = 2D−1

The number of unique combinations for a function with two function nodes as children is14:

cf = F 2 −
F−1∑
i=1

i

And the number of unique combinations for a function with two terminal nodes is:

ct = T 2 −
T−1∑
i=1

i

Thus, a simple estimate for the number of possible trees is:

numtrees = F

(
D−2∏
d=0

2dcf

)(
2D−1ct

)
Given a set of 6 features (as is the case for the BUPA dataset), and 4 functions, often used by

GP programs, the number of possible trees is:

D 0 1 2 3 4 5

Trees 4 84 1,680 67,200 5,376,000 860,160,000

Of interest is the relatively small number of trees for low values of D which gives rise to

a particular observation. The ramped-half-and-half technique makes an even allocation of

depths, such that each depth is used 1/D times. To generate a population of size 500, with

six depth levels, would mean that roughly 83 individuals are produced at each level. If we

assume for a moment that all individuals are produced using the FULL builder, then based on
14It is assumed that the arguments to each function are commutative, so certain combinations can be removed

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 116

the table above, it is clear that there are many more individuals allocated to depth 0 than are

needed. Such a strategy would guarantee the initial population was at least 15.8% redundant.

In fact, the redundancy will often climb higher than this early on in evolution. The reader

may be thinking that it is rather implausible that the minimum tree depth would ever be set

to 0, creating individuals composed of just a single node – but both ECJ and Lil-GP, another

popular open source toolkit, do so; single terminals, in combination with DRS classifiers can

be useful, not least when forming replacements for sub-trees during mutation.

The author’s first adaptation for the tree builder is to ensure that it does not allocate

any more trees to a particular depth than are calculated by the above formula. “Spare”

individuals are allocated to other depths. This helps to ensure that the population will be less

redundant. The results comparing the “standard” tree builder, which allocates each depth

the same number of individuals, and the author’s “weighted” tree builder, which allocates

depths more reasonably, are shown in Figure 5.3. Results shown are the average over 25

runs on the BUPA classification problem and show the average population redundancy at

each generation. They show a marked difference in population redundancy: the author’s tree

builder significantly reduces it. The reader may recall that the tree builder is used to generate

the initial population and then to generate sub-trees for mutation. Although mutation is only

used for 20% of reproduction events, and not all mutation involves sub-tree mutation, the

choice of tree builder nonetheless has a significant effect on the redundancy of the population.

A second consideration relates to the GROW builder, which does not insist upon building

FULL trees. However, the deeper the tree, the less likely it becomes that a tree that extends all

the way to the maximum depth D can be built. Given a probability p(t) of picking a terminal

node, as opposed to a function node, the probability of a branch reaching D is:

p(branch) = 1− p(t)D−1

The probability of the any branch in the tree reaching D is:

p(tree) =
D∏

d=1

1− p(t)d−1

Figure 5.4 shows the output of this function plotted for different values of the max depth

D and different values of p(t). Although the probability of a single branch reaching depth D

will decrease as D increases, so too does the number of possible branches, so the probability

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 117

Figure 5.3: A comparison between the author’s weighted tree builder, and the standard tree

builder. The authors builder yields populations with substantially less redundancy over the

course of 50 generations.

Figure 5.4: The probability of developing a tree of depth D for different terminal:function

ratios

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 118

of the tree having at least one branch at depth D approaches equilibrium for higher values

of D, since the most important determinants of whether a tree can have branches at depth D

are the choices made nearest to the root of the tree. As is shown in the graph, the equilibrium

point is chiefly determined by the value of p(t). Later in this chapter, we shall study the

classification of a variety of different datasets, which use between 4 and 36 features. Given

a fixed number of functions, the choice of dataset will therefore affect p(t). In turn, this will

bias the tree builder in favour of producing smaller trees for certain datasets, which may

increases the amount of redundancy, and cause the system to behave differently for different

tasks.

The author’s second adaptation is to introduce a probabilistic selection method to the tree

builder in order to ensure that p(t) is constant for all datasets. This is similar to a technique

implemented by Luke [17], but here we are able to catch a glimpse of what appropriate

parameter choices may be. Figure 5.4 shows the consequences of different values of p(t) A

straight 50:50 split would only result in about 30% of trees at D = 5 to reach the maximum

depth, which may result in more duplicates. Setting p(t) to 0.3 means that trees reach the

maximum depth over 60% of the time, which may allow the system to explore the search

space more thoroughly. This is the default parameter in the author’s toolkit. It ensures that

every dataset can be treated in a similar fashion, which makes comparisons more valid, and

the system more applicable to different datasets. Further experiments have confirmed that

this has no negative effect on the eventual accuracy on any of the datasets.

5.1.6 Performance Considerations

The nature of many evolutionary learning systems is to produce a lot of solutions then throw

the majority of them away. Although this process is key to learning by simulated natural

selection, it is also inherently wasteful. As a stochastic process, it is usually wise to run the

genetic learning system several times in order to estimate the true performance, which intro-

duces further computational expense. Although the programs evolved can be very concise,

the computational demands of GP learning, especially on computer vision problems, is al-

ways a concern – and possibly one of the reasons members of the computer vision community

do not often use GP! By contrast, techniques such as XCS [48] aim to evolve and improve

a single system through less blunt reinforcement and thus may converge upon a solution

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 119

more quickly. The nature of the genetic operators themselves is also of concern. The process

of crossover and mutation, which drive the search through the program space, can become

more destructive than constructive.

Although GP will oftewn be more processor intensive than other techniques, there are

ways in which one can preserve the learning capabilities of GP while significantly reducing

the time required to evaluate a given number of individuals. In this section we shall pro-

vide a brief performance comparison between SXGP and ECJ, an established evolutionary

computation system.

A common issue in GP which has significant impact on performance is the presence of

useless code segments within individuals, known as “code bloat”, that reduce the efficiency

of the learning process. As the amount of useless code increases, so it becomes increasingly

less likely that the GP operators will have a noticeable effect, since they end up swapping one

unused code fragment for another. Left unchecked, the process of learning can effectively

cease.

Various techniques are used to reduce bloat, including parsimony pressure and dynamic

maximum tree depth [128], which penalise or remove large individuals respectively. Howe-

ver, for a generic system, it is difficult to quantify what is “large”, so an alternative solution

was employed.

Elitism, a commonly-used technique which copies the n best individuals in the population

directly into the next generation, is used instead. Studies have shown that evolution with

elitism enabled yields smaller average population sizes [44]. One can argue that individuals

that are padded out with unused, and thus expendable, pieces of code are more likely to

survive the processes of crossover and mutation intact: so there is a selective pressure which

encourages the proliferation of code bloat. The direct copying into the next generation re-

moves some of this selective pressure that encourages individuals to protect themselves with

unused code.

SXGP’s tournament selection mechanism will also choose smaller individuals in the case

that two equally-fit programs are competing for the same tournament. The tree checking and

strong-er typing functions in SXGP also prevent bloat code from becoming prevalent. Since

SXGP can automatically remove many forms of inactive code, additional trees that have a

negative effect on the individual’s ability are quickly eliminated. This is a form of multi-

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 120

Figure 5.5: Comparison between best-of-run program sizes (in terms of number of nodes)

following 50 generations of evolution for SXGP and ECJ.

objective optimisation analagous to lexicographic ordering, described in Chapter 2.

The combined effect of these additions is presented in Figure 5.5, which compares the

average size of best-of-run programs for both SXGP and ECJ following evolutionary runs of

50 generations. Although the max-tree-depth parameter was set to the same value in both

toolkits (all other parameters were similarly matched), ECJ tends to produce significantly

larger individuals than does SXGP15, whose best-of-run programs are typically a third of the

size of ECJ programs. Consequentially, evaluating 500 individuals over the course of 50

generations takes about three times longer in ECJ.

5.1.7 Function Set

Thus far we have not discussed in much detail the function set to be used by defined for the

GP system. The function set is a pool of nodes that the tree builder can use when generating

problems. Functions, be they mathematical, logical or boolean in nature, are essential for

combining terminals together in order to produce a one-dimensional output. It is typical for

GP researchers to include their chosen function set in their published work, and indeed there

are variations, although many restrict the function set quite tightly to purely mathematical
15In addition, the SXGP equivalent is generally slightly fitter.

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 121

Figure 5.6: Average errors for individuals evolved by GP systems with “limited” and “exten-

ded” function sets.

operators. The author suggests that this limits the system to evolving linear operations. The

most common non-linear function in use is the IF () function (example on p 18), which in

turn requires boolean operators such as AND,OR,LESSTHAN,MORETHAN to form its

condition.

One can embellish the function set with any number of additional functions, including

trigonometric functions, statistical functions, and other non-linear operators. An interesting

question is whether the use of such functions yield better individuals. An experiment was

conducted to assess the average accuracy of individuals produced from two different func-

tion sets. The first “limited” set used only the four arithmetic operators +,−,×,÷, and the

IF () and boolean operators mentioned above; the second “extended” dataset added a variety

of additional operators, including trigonometric functions sin, cos, tan, non-linear functions

max,min and additional mathematical functions exp, ln, squared, cubed. GP classifiers were

evolved using each function set 50 times apiece; the results are shown in Figure 5.6.

The figure shows the average error for two different function sets. For the eleven datasets,

the difference in error was insignificant on eight occasions, indicating once again that GP is

able to select appropriate functions automatically in most situations. For the three datasets for

which there was a significant difference (BUPA, Pima, WDBC) however, the extended dataset

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 122

was found to perform worse on each occasion. In each case the fitness on training data was

also affected, indicating that the additional functions do not hamper the classifier’s ability to

generalise, but rather the system’s learning rate. On the basis of this experiment, it would

appear that any advantage offered by these more complex operators is offset by an increase

in the size of the search space. The author’s generic system therefore makes use of the limited

function set, which appears to yield better results in most situations.

5.1.8 Terminal Set

The terminal set includes all the attributes within the feature vector that describes a particu-

lar object. In the case of the public datasets used throughout this chapter, the features are

predefined, ranging in number from 4 – 36. The generation of the features themselves from

images is discussed in the following two chapters. In any case, feature vectors are provided

to the GP system through a common dataset interface, which permits samples loaded from

files or databases to be loaded, or those taken directly from images. Each feature is allocated

a terminal, which becomes a member of the terminal set.

In addition, the terminal set includes a number of so-called ephemeral random constants

(ERCs), constants whose values are set at the time of tree-creation and subsequently remain

fixed. These terminals give GP the opportunity to perform scaling, other arithmetic opera-

tions, or comparisons. To ensure that comparisons are meaningful, the constants are matched

using the author’s stronger-typing technique (see page 106): features which return, say, va-

lues between 0 and 1 are only compared with constants which return values within a similar

range.

5.2 The Evaluation of Fitness

We shall move our discussion of parameters onto the evaluation of fitness (discussed in Chap-

ter 2, page 20), which merits its own section. The computation of fitness is the primary

means by which the selection algorithms can differentiate between different programs, and

is therefore very important.

The appropriate fitness function to use in computer vision is often task dependent. For

general classification tasks, it is usually the case that each error is equally costly, so a straight-

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 123

forward fitness function that measures simply the number of mistakes made by a given pro-

gram on a training set can yield good results. It is sometimes the case that certain classes

are more prevalent in training data than others, and therefore receive more attention than

others. This is not necessarily a problem provided the training data is a true representation of

the world. If not, one strategy is to calculate fitness per-class, and choose the average or in-

deed lowest fitness. The former gives each class an equal weighting and the latter encourages

“generalists”.

Binary detection tasks, by contrast, may be considered as a multi-objective optimisation

problems: ideal solutions must both be able to detect as many of the objects of interest

as possible (be sensitive), and not detect erroneously other objects (be specific). In face

detection, for instance, there are many more non-face objects than there are face objects, so

it is beneficial to take the relative occurrence of each class into account in the fitness function.

The two criteria can be aggregated into a single fitness function using some form of weigh-

ted sum. One example is that used by Roberts & Howard [18], who incorporated two coeffi-

cients α and β to weight the system’s sensitivity to the different types of error:

error2 =
αTP

αNt + βFP

Where TP is the number of correctly classified samples (true positives), FP is the number of

incorrectly classified samples (false positives), and Nt is the number of “true” samples in the

training set. Oddly, this formula calculates αTP/N as a percentage, but also adds FP to the

denominator, meaning that the effect of α relative to β is dependent on the total number of

“false” samples. It occurs to the author that the following calculation makes more sense:

fitness3 = α
FN

totalFN
+ β

FP

totalFP

In fitness3 the fitness is composed of two parts, the first relating to the total weight of

false negatives and the second relating to the total weight of false positives. The relative

importance of each kind of mistake is encoded using an appropriate α : β ratio. The allocation

of weights, however, introduces additional parameters to the evolutionary system; often the

approach is to try different combinations of each such that the classifier’s performance can

be plotted using an ROC curve. This is one means of finding solutions distributed along or

nearby the Pareto front.

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 124

From a more practical point of view, however, we are really interested in just a single

solution to detect objects in images. The approach taken by researchers is usually to develop

a rough detector, which is highly sensitive but yields quite a few false positives, whose output

is then passed to a finer detector, which makes the final decision. During the course of this

study, the author experimented with various other fitness approaches, admittedly not always

with much degree of success. Some of which are briefly mentioned below.

5.2.1 Sample Weighting

Having considered the relative importances of different kinds of mistake, and whether one

may wish to weight samples collectively, it is also worth considering whether individual

samples should be allocated different weights according to their individual difficulty, since

some samples will be easier to classify than others. By weighting the samples that appear

more difficult (that are misclassified most often), it may be possible to improve performance

of the classifier, or at least ensure that the system does not become mired in local minima.

A useful benchmark when considering this sort of approach is AdaBoost, by Freund and

Shapire [89]. Adaboost is a meta learning algorithm which develops classifier ensembles over

the course of several learning sessions. The weights associated with different training data

samples are adjusted to influence the learning system to solve more difficult training data.

Weights are adjusted only following the complete learning of one classifier, which makes it

quite slow to generate accurate classifier ensembles.

The author investigated a technique whereby the weights of different samples could be

adjusted during a single evolutionary run. As usual, the fitness of any individual is calcu-

lated by adding the weights of all incorrectly classified samples. After each generation, the

weights of each sample is adjusted, such that unsolved samples increase their weight while

solved samples have their weight reduced in proportion to how well the classifier solved the

sample set as a whole. By implementing a dynamic fitness function, it is hypothesised that

the individual would be less susceptible to becoming stuck in local minima. However, experi-

ments revealed that this approach did not yield an improved rate of learning; classifiers were

typically less accurate than those developed using a standard fitness function.

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 125

5.2.2 Encouraging Generalisation Ability

The fitness functions thus far have concentrated on the classifier’s error on a given training

set. However, a common problem in non-parametric classification is over-fitting, where a

classifier learns the behaviour of a specific set of data set so well that its ability to work on

novel data is compromised. It is desirable, therefore, to evolve classifiers that can learn to

generalise. As has been observed elsewhere in this thesis (see page 78), different techniques

may produce a lower fitness score on training data but nonetheless outperform the fitter

classifier on test data. Given a set of individuals evolved by a learning function, choosing the

best of them according to training data error alone is therefore somewhat insufficient.

The usual solution is to reserve a portion of the training set for the purpose of validating

the classifier; the performance on the validation set gives a better indication of the classifier’s

ability to generalise. Of course, once the validation set has been used for this purpose it

is no longer an unbiased estimator of performance, so a completely unseen test set is also

employed to make the final assessment of a classifier’s capability.

Training Set Splitting Of course, the use of a validation set takes away a proportion of

samples from the training set that would otherwise be used for training, which itself may

have an effect on the generalisation ability of the classifier.

The author devised an alternative method, intended to gain information about the classi-

fier’s generalisation ability without sacrificing any data, and without resorting to computatio-

nally costly methods such as cross-validation or jack-knifing.

The technique involved splitting the training data into two sets, which are evaluated se-

parately. The classifier was evaluated on each set, with the sum of errors yielding the training

fitness before. To the error, the difference between errors on the two sets is also added, thus

imposing a fitness pressure toward consistency. However, it was not possible to detect a

significant improvement; indeed this algorithm sometimes worsened the performance of the

classifier both on training and test datasets, perhaps reflecting that the two sub-datasets could

not be assumed to be directly comparable. This experiment reveals once more the perils of

tinkering with fitness functions!

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 126

The Validation Dataset Discarding the author’s penchant for experimentation for one mo-

ment, the conventional way to use validation sets is to leave them untouched until the evolu-

tion process has completed, then to use them as estimators of the classifier’s performance on

unseen data. This allows the generalisation capability of the classifier to be assessed without

affecting the delicate fitness function. As GP evolution sessions typically involve producing

a number of individuals during the course of many runs16, their performance on validation

data, as opposed to their training fitness, can be used to select the most promising individual.

A similar process can be used when trying out classifiers produced by classifier fusion.

One significant advantage of using validation data in this way is that the GP evolution

time is shortened, since the training set is reduced in size. The proportion of data to use

for validation sets poses a dilemma: choosing too high a proportion may make the training

set too small, while choosing too low a proportion may make the validation set unreliable.

However, results from the author’s experiments with validation results did not reveal any

significant advantage of using validation sets.

5.3 Comparisons

Having discussed the GP toolkit in more detail, we now move onto some empirical compari-

sons, using a set of binary and multi-class benchmark datasets (summarised on page xi).

5.3.1 Dataset Interface

Of the selection of eleven datasets used throughout this thesis, four include their own separate

test set permitting validation on unseen data, which provides an indication of a given clas-

sifier’s ability to generalise. The rest are validated using 10-fold cross validation, a standard

technique for estimating performance on unseen data. Cross validation is usually performed

by splitting the dataset into 10 sub-sets, from which one is chosen as a test set, with the rest

used for training. The learning process is invoked for every test/training combination, so the

overall training error can be averaged, and the test error estimated. The author’s implemen-

tation of k-fold cross validation uses a stratified selection policy to generate the folds, which
16This is done to avoid the effects of initial populations. The GP environment should always converge on an

equally fit solution given enough time, but undertaking multiple runs is the most reliable way to ensure that a

particular result is representative.

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 127

ensures that the relative class distributions within each sub-set are kept as similar to that of

the main set as possible. Some benchmarks, such as the Vehicle dataset, include pre-defined

folds; this is also accommodated. The author’s software interface permits each type of dataset

to be presented to the classification system, whether it be one of the public training datasets,

or a dataset generated from images.

5.3.2 Comparing with ECJ

Before going on to evaluate SXGP in a more general sense, it is necessary to compare it to a

benchmark GP implementation. For this comparison, the popular ECJ toolkit [6] was chosen,

which at time of writing was available in its 18th version. Like the author’s own toolkit,

ECJ is implemented in Java, so comparisons of performance are meaningful. ECJ’s default

implementation is, where appropriate, based on Koza’s original specification, making it a

suitable benchmark. Finally, and despite a rather complex architecture, ECJ is surprisingly

efficient – so much so that this author had to expend some considerable time on optimising

his own toolkit first!

In the experiments each toolkit was run on the same datasets. In order to make the

comparison as meaningful as possible, most of the novel features in SXGP were deactivated

such that the two toolkits could compete on an equal footing. As far as possible, equivalent

problem definitions were coded using each toolkit, including identical node functionality,

identical parameters and an identical fitness-function. The representation in each case was a

multi-class DRS classifier.

Twenty five classifiers were evolved by each toolkit over the course of twenty fice runs,

each lasting for fifty generations. The average test fitness of these classifiers on a series of

datasets is presented in Table 5.2, and graphically in Figure 5.7. The difference between

classifiers, and the results of an independent samples T-Test are also shown. The results show

that SXGP is able to compete effectively with ECJ: SXGP produces the better classifiers on

every occasion where the difference between classifiers’ average fitness is significant.

It is interesting to question why ECJ’s performance is not more equivalent with SXGP,

given the similarity of the problem implementations and otherwise identical parameters. One

answer may be found in the average program size of individuals evolved by ECJ and SXGP

respectively, already presented in Figure 5.5, which shows that ECJ produces substantially

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 128

Dataset ECJ Accuracy SXGP Accuracy

BUPA 60.6 ± 2.4 62.4 ± 2.6

Glass 57.1 ± 2.3 58.3 ± 3.1

Heart 75.9 ± 1.9 77.7 ± 1.8

Ionosphere 88.0 ± 1.5 89.9 ± 1.4

Iris 89.1 ± 3.0 94.6 ± 1.3

PenDigits 59.2 ± 3.2 59.5 ± 2.6

Pima 74.3 ± 0.8 74.7 ± 0.8

SatImage 75.5 ± 2.7 0.252 ± 2.3

Thyroid 97.1 ± 0.8 97.7 ± 0.3

Vehicle 60.6 ± 1.4 60.5 ±1.7

WDBC 94.3 ± 0.8 95.9 ± 0.5

Table 5.2: Toolkit Comparison: Average accuracy of DRS2 classifiers developed by SXGP and

ECJ v18 on various datasets. Averages from 25 runs, ± value indicates the standard deviation.

Bold text indicates a statistically significant better result.

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 129

Figure 5.7: Comparison between best-of-run program test errors after 50 generations between

SXGP and ECJ.

larger individuals most of the time. Since SXGP can achieve equivalent or better solutions

with substantially smaller individuals, it is fair to say that the additional size is a result of

bloat, as opposed to useful code. As well as reducing the efficiency of GP learning, bloat can

prevent learning from taking place, by turning the GP system into an automatic means of

swapping useless code fragments.

These results suggest that the author’s toolkit is comparable to a standard and widely used

Genetic Programming toolkit, which has been under continuous development for the best part

of a decade17. This experiment justifies the author’s decision to use SXGP exclusively as the

GP toolkit in this thesis.

5.3.3 Comparing to Other GP Results

In the second process of validation, the author’s GP Toolkit was compared to published results

obtained by other GP researchers in order to establish whether the author’s ICS classifier is

competitive with the state of the art in Genetic Programming in a more general sense. SXGP
17This particular comparison is valid only for problems of this type, using GP: ECJ does support considerably

more evolutionary learning paradigms than does SXGP.

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 130

was put to work on certain public datasets, for which figures had already been published by

other GP researchers. The results of the experiments are presented in Table 5.3.

Data Set SXGP(ICS) Loveard[129] Chien [130] Bot[110] Muni[112] Folino [131]

BUPA 71.3 ± 1.6 69.2 ± 1.6 -

Heart 84.8 ± 1.7 -

Glass 67.3 ± 2.0 64.1 ± 9.1 -

Ionosphere 95.7 ± 0.8 92.8 ± 2.3 90.2 ± 5.5 -

Iris 98.7 ± 0.1 95.3 ± 1.0 98.7 ± 0.0

PenDigits 92.0 ± 2.3 - 83.1

Pima 76.5 ± 0.8 75.8 ± 0.8 71.7 ± 5.0 -

SatImage 87.8 ± 0.5 80.7 ± 1.3 - 81.4

Thyroid 98.9 ± 0.3 97.6 ± 0.2 -

Vehicle 73.0 ± 3.1 62.4 ± 2.9 75.3 ± 2.4 61.8 ± 0.1

WDBC 97.1 ± 0.1 96.4 ± 0.2 - 97.2 ± 0.0

Table 5.3: Results compared to those published by other GP researchers. Results in bold are

the most accurate.

The results in Table 5.3 show that the author’s Genetic Programming toolkit consistently

produces classifiers that are competitive with other published results, although as usual there

is no single best technique for every dataset. The author’s work is based most closely upon

the work by Loveard and Ciesielski [129]; it can be seen that the author’s toolkit delivers

significantly improved results over those published by Loveard.

5.3.4 Comparing to Other Classification Techniques

In this final comparison, the author’s toolkit is compared to other techniques from outside

the Genetic Programming community in order to establish the extent to which evolved classi-

fiers are competitive with the results of human-written learning algorithms. The comparisons

are performed once again using publicly available datasets. This has already been done in

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 131

the past: a previous study by Lim [132] compared 33 different classification algorithms on

a series of public datasets. Equivalent results using Genetic Programming were later added

[129]. With the algorithms compared in rank order, one particular GP representation (DRS,

discussed in Chapter 4) was found to be reasonably competitive with the 33 other techniques

at solving binary problems (ranking as high as fourth), but in general the GP programs’ ran-

kings were mediocre.

The study by Lim was dominated by a number of decision tree algorithms; the results here

also include comparisons to other, more recent classifiers. The algorithms compared here in-

clude Support Vector Machines (SVM), Multi layer Perceptron Neural Networks (MLP), the

C4.5 Decision Tree Algorithm, and various implementations of k-Nearest-Neighbour algo-

rithm (k-NN). The best results found by the author for each dataset, which come from a

variety of different sources, are presented in Table 5.4.

Data Set SXGP(ICS) SVM MLP C4.5 k-NN

BUPA 71.3 76.1 73.1 68.1 64.9

Heart 84.8 87.4 82.0 78.9 83.8

Glass 67.3 68.6 75.2 68.2 72.0

Ionosphere 95.7 93.2 96.0 94.9 98.7

Iris 98.7 98.0 96.0 95.3 95.7

PenDigits 92.0 97.5 93.4 96.6 -

Pima 76.5 77.2 76.4 73.0 76.7

SatImage 87.8 88.4 91.0 86.3 90.9

Thyroid 98.9 96.1 99.3 92.6 97.9

Vehicle 73.0 79.0 79.3 73.4 72.8

WDBC 97.1 97.2 96.7 94.7 97.1

Average 85.7 87.1 87.1 83.8 85.5

Table 5.4: SXGP versus Other Techniques on 11 Public Datasets.

As well as confirming the phenomenon that there is no such thing as a best classifier that

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 132

consistently outperforms other algorithms, the results show that SXGP is competitive with a

range of other techniques from outside the realm of evolutionary computation on a series

of different problems. It should be noted that the same GP implementation with identical

parameters was used to derive all of the SXGP results.

The Vehicle dataset, in which silhouettes of four different vehicle types must be establi-

shed, is difficult to solve. This is not to say that the problem itself is intractable – our brains

can differentiate all kinds of silhouettes accurately. Rather, it is the limitations in the attributes

chosen to describe each silhouette that make the problem difficult since a certain amount of

important information is lost. Many of the UCI datasets were constructed from a finite set

of measurements taken during the course of manual experimentation. However a computer

can take literally thousands of measurements from a given image with little effort, leaving

one spoiled for choice. It is difficult to decide which attributes would aid accurate classifica-

tion and which would be irrelevant. In fact, irrelevant attributes may actually decrease the

performance some classification algorithms, such as k-NN. Different feature sets which may

facilitate classification will be investigated in Chapter 6.

5.4 A Discussion

Before moving onto the vision aspects of this thesis, the author shall complete this chapter

with a short discussion of classification in general.

The many classification algorithms can ordinarily be split into two groups: parametric

and non-parametric. The parametric methods generally aim to identify a set of coefficients,

one for each variable, that express a combination of features whose output Y can predict a

certain event or class. Techniques such as Fisher’s Linear Discriminant [133] rotate the axes

in order to find a linear subspace that separates the classes in a single dimension. Since Y

is considered a probability, its value can be combined with prior probabilities using Bayes’

theorem to obtain an answer that takes into account the relative abundances of different

classes. Although the discriminant methods are intuitive, like all statistical techniques they

are reliant upon on a number of rigid assumptions, such as feature independence, normal

distributions or homoscedasticity, which rarely hold true for real world data.

A more pressing problem is that this kind of approach cannot accurately model non-

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 133

linear relationships in data. The so-called Generalised Linear Model [134] is an extension

which permits models to work with non normally-distributed data distributions, particularly

those with an exponential distribution, using some form of link function. Of these, Logistic

Regression, which also places fewer assumptions on the data, is one of the most extensively

used techniques for parametric classification.

The advantage of the non-parametric methods is that they do not place arbitrary restric-

tions on data as they are not always based on statistical theory. They usually require more

training data in order to produce accurate solutions and often take longer to train than do

the simpler statistical methods.

One popular family of non-parametric techniques are the recursive partitioning algo-

rithms, or decision-tree algorithms, of which the most well known is probably Quinlan’s C4.5

[107]. The objective of the decision tree algorithm is to recursively split the dataset into two

or more increasingly homogenous subgroups in order to improve the classification of a target

variable. Various techniques exist to choose the point at which the data is split, but the ge-

neral idea is that the root node is split by the variable that best divides the samples and so

on.

Although decision tree algorithms generally exhibit good performance as classifiers, and

have the advantage of easy interpretation, they also suffer from two drawbacks. The first,

more theoretical, drawback is that generally the splits can only be performed orthogonally

with respect to the features, so the regions in space cut out by decision tree algorithms are

hyper-rectangles. The algorithm may perform badly if the decision planes are actually dia-

gonal. The second problem is that they are prone to over-fitting, which occurs naturally if

the splitting process is permitted to continue unchecked, although post-processing “pruning”

techniques are designed to alleviate this problem.

The most significant advantage of the non-parametric techniques is that they can develop

arbitrarily complex models and thus are likely to outperform parametric statistical techniques,

provided they do not over-fit the data. Parametric techniques, which are usually fast to exe-

cute, may be useful when deciding which variables are important and which are irrelevant.

The author shall make use of this in experiments in the following chapters.

Another non-parametric technique, the k-Nearest-Neighbour algorithm, is an example of

instance-based learning. Novel feature vectors are compared to a database of the training

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 134

data each according to some distance function, usually the Mahalanobis distance (which

has the advantage of scale invariance). The most common class among the k nearest of its

“neighbours” is chosen as the appropriate label. As such, the training procedure is trivial,

although the classification stage, to which the computational is deferred, can be slow when

using large datasets; memory usage too, can be a problem. The choice of k is also difficult

to ascertain in a principled way, although in general small values where k > 1 make the

algorithm more robust, while the choice of k = 1 is generally suitable only for very small

datasets (< 100 samples).

Neural networks are also often employed in classification. While Rosenblatt’s [135] classic

single-layer perceptron shares much in common with a basic linear regression approach, the

neural networks generally used for classification are perceptrons with multiple-layers, which

are capable of learning complex non-linear relationships between data, due to the usually

non-linear activation functions working within each neuron.

A problem with neural networks in general is that the choice of network topology has a

significant impact on the viability of the network after it has been trained. The hidden layer,

if too small, may render the network incapable of suitable approximation; if too large the net

also becomes prone to over-fitting. Irrelevant features can be a danger for neural networks,

as they may make the back propagation learning process significantly slower.

A closely related approach to neural networks is Support Vector Machines (SVMs), ano-

ther non-parametric, supervised learning technique. Like discriminant analysis, SVMs aim to

locate some form of decision plane that divides clusters of data, but SVMs are non-linear and

also aim to maximise the margin between the plane and the groups’ outliers, so wherever

possible, the plane that provides the largest gap between groups is chosen. This provably

reduces the upper bound on the expected generalisation error.

A significant advantage of SVMs is that the number of features in the training data does

not adversely affect the performance of the completed SVM classifier, since the number of

support vectors selected by the algorithm which define the hyper plane, is usually small. On

the other hand, SVMs are generally unable to classify more than two classes at once, which

calls for some form of binary decomposition, and certain parameter choices can leave the

SVM prone to over-fitting its model to training data.

Generally speaking, SVMs and neural networks tend to perform better when dealing with

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 135

high dimensional spaces and continuous features. Categorical data is best dealt with by

the decision tree algorithms. As more sophisticated algorithms, however, both require more

parameters to be set that then other techniques.

Apart from the decision trees, non-parametric methods generally manifest themselves as

“black boxes” since it is difficult to understand how or why they reach a particular decision.

This is a particular disadvantage in areas of business, such as credit scoring, or medicine,

where people are uneasy leaving important decisions to an algorithm they don’t understand,

but is less of a concern when producing vision systems18.

Many of the algorithms, both parametric and non-parametric, are in some way dependent

upon the initial random choices assigned to certain values, whether it be parametric coef-

ficients or neuronal weightings. An advantage of the population approach to learning, em-

ployed by most evolutionary learning algorithms, is that the solutions cover a broader surface

of the search space instead of a single point, so initial random choices are less of an issue.

Of course, the population paradigm places an additional computational overhead so different

runs may yet provide different performances if not run for long enough.

Although the results in this chapter show that Genetic Programming is competitive with

state-of-the-art techniques on given problems, perhaps more so than have done previous GP

researchers, the results also correspond with a long line of comparative studies which all state

that there exists no “magic bullet” solution to problems involving classification. Furthermore,

although this discussion draws attention to the pros and cons of each technique in an analyti-

cal sense, these issues do not necessarily manifest themselves in real world scenarios: A study

[136] found that the naive Bayes’ classifier, despite its requirement for feature independence,

could sometimes be superior to more sophisticated algorithms.

Nonetheless the most appropriate course of action is to select the classification technique

which appears most appropriate for the task. Given the kind of vision tasks tackled within this

thesis, there are certain techniques that can be ruled out. Linear discriminant analysis, for

instance, generally requires that the classes have equal numbers of members, which is rarely

the case in vision and certainly not in generic vision. k-NN places a similar requirement and

like neural networks is regarded as sensitive to noise and irrelevant features, both of which

may be present in images.
18We are accustomed to not understanding how the human vision system works!

CHAPTER 5. VALIDATING THE EVOLVED LEARNING SYSTEM 136

Evolutionary techniques are not often mentioned in discussions of classification. Unlike

the above approaches, genetic techniques are particularly bound by any given representa-

tion: GAs can be used to determine neural network weights, or weights for discriminant

functions in place of the least squares technique. GP can readily develop decision trees, and

the concept of a margin can be built into a GP fitness function to offer advantages similar to

SVMs. We’ve seen that the author’s ICS classification technique makes use of different clas-

sification approaches dependent upon the task to be solved, which may be advantageous. In

the following chapters we shall see how well equipped is Genetic Programming as a generic

creator of vision systems.

Chapter 6

GP for Low-Level Vision Tasks

Having established a classification strategy by Genetic Programming (GP) which is compe-

titive with other techniques and considered how it might be converted into a “black-box”

learning procedure, we can now turn our attention to using it for the automated develop-

ment of vision systems. This chapter will describe some of the imaging techniques used and

will discuss the construction of training datasets for image problems.

Here we begin to focus on some key problems in computer vision, and examine how GP

classifiers may be employed to produce vision applications. That is, alas, too high level just

now – we must first explore exactly how one might create a suitable datasets for a given vision

problem. Among the datasets used for validation in Chapter 5 was the Iris dataset [133], in

which the task is to distinguish three species of iris given four measurements of the length

and width of the flower’s petal and sepals1, and the Wisconsin Diagnostic Breast Cancer set

[137], which consists of a number of measurements relating to cell nuclei which may be

predictors of the presence of cancer. The nature of the Iris and WDBC measurements seem

rather obvious, given their specific domains, but exactly which measurements should we take

from images in order to develop a generic vision solver? This chapter starts by discussing the

kind of image measurements that may be useful. Later it shall be demonstrated how they can

be used by GP to approach a selection of low-level vision tasks.

Exactly what makes a useful image feature is a significant point of discussion in itself.

Some algorithms, such as SIFT [58] and SURF [59], were developed to find generic points

of interest within an image, which seems quite promising. A range of other detector families
1A sepal is part of a flower, usually green, lying under the more colourful petals.

137

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 138

are concerned with the detection of many kinds of features, such as corners, edges, blobs,

lines and geometric shapes. Although the kind of features detected by SIFT are quite robust,

making them suitable for image matching and 3D reconstruction work, one has to consider

the extent to which different objects can be described using such features. It may be these

points of interest are in fact too generic to work well in our experiments; indeed a substantial

database is needed when SURF features are used for classification2.

While the goal of this thesis is to discover a generic methodology for solving problems, this

does not necessarily mean that it should be reliant on generic features. Instead the intention

is that our GP-powered learning algorithm should find highly specific solutions to particular

problems by tailoring or tuning features. Although such solutions may have limited scope

for re-use, the automatic means by which they are developed makes this concern somewhat

irrelevant. The idea of this work is to develop a system capable of producing “disposable”

vision systems!

6.1 The Approach

As we’ll see in the next chapter, the author’s vision framework may develop solutions with

up to four, separate evolved stages of processing. Each stage may be defined broadly as

either feature detection or object classification. The first, feature detection, is the topic of

this chapter. The author’s approach is introduced following a brief discussion of two different

image processing techniques.

6.1.1 Segmentation

Images are usually represented as arrays of pixel data. Such arrays are typically large, yet each

individual pixel bears little information about the overall content of the scene. To understand

the image it is helpful to look at groups of pixels rather than in isolation. Segmentation

(discussed on page 51) is a method for grouping the pixels into larger “segments”, each of

which may represent information about the image content more succinctly. Although there

are various means for going about segmentation, the author’s approach is to have GP develop
2According to David Lowe, the inventor of SIFT, a typical 500×500 image will give rise to approximately 2000

stable SIFT features.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 139

some measure of similarity which categorises a given pixel into a particular class. A decision is

made for every pixel in the image. Segments are then constructed from homogenous regions

of similarly classified pixels.

The nature of the similarity is problem-specific, as is the number of different classes, but

the concept of “apparent material” is a useful rule-of-thumb. Given that objects are often

composed of components made from a single material, identifying those pixels which have

similar characteristics to known pixels of a given class will go some way toward identifying

the position and contours of objects and sub-objects within a scene. The computer vision

developer may then choose to discard, investigate or compare different regions.

Segmentation has a large range of applications. It may be used to identify bands of

mineralogical or geological features based on multi-spectral image data, to identify human

skin, for background subtraction, are part of optical character recognition, or in medical

image processing, to name a few examples.

Although segmentation can be quite flexible, it does have certain drawbacks. For instance

it works best when objects have clearly defined boundaries, so segmenting more amorphous

objects with soft edges may not yield robust results. It will typically distinguish objects based

on material, so each object must have reasonably consistent appearance. Finally, it isn’t

always invariant to changes in scale.

6.1.2 Window Detection

One common method which addresses some of these issues is window detection, which is

usually employed to detect particular patterns or shapes within a given rectangular area or

window, which slides over the image. At each position, a number of features are calculated

for different areas and shapes within the window, and a decision is made whether an object

exists at the location or not.

Rather than basing all features on or around a central pixel, the window detector may take

its decision based on relationships between different groups of pixels within the window. If

the size and location of features within the window are defined by percentage measurements

of the window’s own dimensions, then the window can be increased or decreased in size in

order to achieve a degree of scale invariance.

Window detection has two particular issues. The first is that for an x × x window, there

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 140

will be an x/2 thickness border around the image that cannot be identified. Second is that

the appropriate window features for a given task often have to be discovered themselves.

6.1.3 Feature Detection Approach

The author’s approach is to combine the two techniques into a single generic feature detection

system. Since the segmentation process outlined above (by which each pixel is classified in

turn) is essentially an image filter, it is broadly similar to the window detection method. If

all the features are made to exist within and relative to a variable scale window, then the

approach should be able to detect objects in a scene of variable size.

Unlike typical window detection techniques the program can output more than two classes

if necessary. Although the detector is capable of higher-level detection when demanded, the

technique will typically be used to label the whole image, for the purpose of region extraction,

yielding an output similar to that of a segmenter.

The author’s approach thus works as a general feature detector, intended to of identify

certain regions by surrounding context, or texture, or colour (or a combination of each).

To render it capable of doing so, it is necessary to choose image functions that can robustly

quantify these characteristics. In the next section we will discuss the kind of features that may

be useful, before going on to describe how they can be used to generate a suitable dataset for

training the evolved detector.

6.2 Evaluating Image Features

Having discussed some of the ways in which Genetic Programming may be used to classify an

object, given an n dimensional feature vector, we now turn to the construction of the vector

itself, specifically: what image metrics might be useful, and how can we ensure they are as

robust as possible?

Since there is a potentially endless supply of metrics that can be harvested from an image,

it is worthwhile considering criteria by which each may be judged. The author has decided

upon four different considerations that should be taken into account.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 141

1. Robustness Robustness may be defined as a feature’s invariance to image transforma-

tions and other external factors prone to change, such as illumination or noise. The general

idea is that the feature should return a consistent value if referring to the same object. Com-

mon geometric transformations include rotations and scaling. Certain problems, such as the

recognition of vehicles from satellite images, will require rotation invariance around one axis,

and many problems will encounter objects at different scales (face detection, for instance).

Processes such as noise reduction (covered on page 40) may help make the output of certain

features more consistent.

2. Localisation A second important consideration is the ability of the feature to localise

particular objects accurately. It is no use being able to determine the presence of an object in

a scene without being able to accurately pinpoint its location! In general single-pixel features

will be able to do this, although they consider less of the overall context. Features that make

use of several pixels, such as convolution masks or other summed areas, may be more useful

than individual pixel features, but may localise less well, unless they are highly specific. It is

important to have a balance of features using various different area sizes.

3. Efficiency As the feature detector is run on every pixel of the image, and by an inter-

preted GP system at that, it is essential that all features be as computationally efficient as

possible. There are various means of increasing the efficiency of features. Convolution masks

can be optimised or approximated, and in recent years the usage of an integral image, or

summed-lookup table [138] was popularised by the work of Viola and Jones [3]. An integral

image, as its name suggests, is a summed table produced from an original image in which a

point at (x, y) consists of the sum of pixels’ intensities in the rectangular region from the ori-

gin (0, 0) to that point. Using such a table, it is possible to calculate sums or arbitrarily-sized

image regions using just four array accesses, two addition and two subtraction operations.

Certain statistics, such as standard deviation, may also be calculated more efficiently3.
3The efficient calculation of population variance is an interesting topic in its own right. Since the standard

deviation is calculated as the sum of differences for a series of values x1, ..., xn from their mean µ, it can be

calculated in two passes, one to calculate µ, and one to calculate the standard deviation. However, this requires

storing all values of x which is inefficient. A naive one-pass solution calculates the population variances as

σ = (sumofthesquares)/n − (squareofthesums)/n2, but this is numerically unstable in the cases where n is

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 142

4. Usefulness In a general sense, each feature should aid the decision making process by

providing “useful” information. To contrive an example to illustrate the point, the number of

credit cards that a person has may help predict how much debt they are in, but the last three

digits on the back of each card is unlikely to be a successful predictor: both features come

from a similar source, but one is significantly more helpful than the other. In imaging the

same may also be the case.

Naturally enough, these requirements tend to conflict with each other: the more localised

a feature is, the more sensitive it is to small fluctuations, which may impact its reliability.

The need for efficiency limits the complexity of features that can be used. Needless to say,

it is difficult to find a feature that can meet all the requirements, but the idea is to provide

a library of features that is sufficiently diverse as to allow each requirement to be met in

different ways. The task of the GP system is to choose the appropriate features required to

develop a suitable feature detector.

The final requirement, concerning the assessment of usefulness, will be discussed later in

this chapter. However, before we can discuss the selection of features, we must first give some

consideration the features themselves.

6.3 Image Features

In order to render the system capable of solving a variety of different problem types, image

features from three different families were explored:

• Colour Information, about the intensity and colour of a particular pixel.

• Texture Information, regarding the pattern surrounding the pixel in question.

• Spatial Information, regarding the location of the pixel within the image.

These are discussed below.

large and the difference between the numerator values is small. The author uses a one-pass algorithm by Knuth

[139], which iteratively calculates the mean and is numerically stable.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 143

6.3.1 Colour Features

In this section, we shall discuss the kind of colour features that can be made available to the

feature detector. However, since “colour” is more of a perception than a physical property,

it is worthwhile to consider the pre-processing operations that may make colour information

more robust in general.

Robustness to Illumination

While light sensors (including our eyes) only perceive a beam of light in terms of its wa-

velength – a scalar property, the light is actually the product of at least two sources: the

irradiance of the light(s), and the reflectance of the surface being viewed. The human vision

system seems able to recover the surface’s reflectance, what we describe as “colour”, with

relative accuracy, regardless of the light source, a phenomenon known as colour constancy.

While it is sometimes difficult simply to calibrate camera white-balance in order to reproduce

colours faithfully, the development of software that can perceive colours accurately is even

more tricky.

Developing colour constancy algorithms is just one part of the huge task of developing a

sensor that can compete with the masterpiece of engineering buried within the human vision

system. The discipline of colour science is rather beyond the scope of this thesis, but a couple

of ideas will be discussed briefly here. We shall make use of one of them later in this chapter.

One algorithm, white-patch retinex [140], assumes that the true colour of the light can

be identified by looking at white patches in the scene (which are assumed not to affect the

irradiance). White patches are relatively easily identified, as they are the usually the brightest.

When the light’s colour is known, then the colour of the rest of the image can be divided by

that value to recover the “true” colour of the scene’s materials. The white-patch algorithm

is used by many digital cameras for calibration, although it is dependent the presence of

something white, and that the illumination is reasonably consistent throughout the scene.

Another approach, grey-world assumption [141], is based on the expectation that the

average colour of images tends to be grey. Therefore if one finds the actual average colour

of an image, each pixel can be adjusted such that the average colour becomes mid grey.

Although slightly more computationally expensive than the white patch algorithm (the image

needs to be read twice, once to calculate the average colour, second to adjust the values) the

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 144

Figure 6.1: The two images at the top have different tints, to indicate different lighting

conditions. The images on the bottom show each images following adjustment by the author’s

grey-world-assumption implementation. The lower pair of images are more comparable than

the top two.

technique can produce reasonably good results.

Figure 6.1 shows the author’s implementation of a basic grey-world retinex algorithm on

two images that have been “lit” with different lights. While it is difficult to know what the

“true” appearance of the image, minus the lights is, the algorithm appears to work reasonably

well, here at least producing the kind of consistent perception necessary to make decisions

more robust, although the saturation and contrast in the lower images is reduced because of

division operation. While the author does not claim to have implemented an ideal solution to

the problem, its inclusion here is recognition of a useful processing step for a system designed

for creating generic vision systems which may have to work in non illumination-controlled

environments.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 145

Exposure Compensation Machine vision systems may also produce inconsistent results in

environments where the range of intensities is too large for the camera’s exposure system to

accommodate. Although humans are able to perceive both very bright and relatively dark

objects within the same scene with relative ease, cameras tend to correctly expose one area

while underexposing or overexposing others, manifested in some images by either completely

white-out skies (“blown out highlights”), or dark silhouettes in the foreground (“blocked

up shadows”). The human retina is composed of both extremely sensitive intensity sensors

(rods), and much less sensitive colour sensors (cones). This allows our vision system to

support a much higher dynamic range than current camera sensors, which typically only

apply one level of sensitivity to the whole CCD at once4; exposure in cameras is typically

governed by a single light meter. Furthermore, camera light meters assess exposure by subject

brightness rather than incident illumination.

Until camera sensor technology improves in this regard, computer vision software in envi-

ronments with uncontrolled lighting conditions will remain a limitation affecting the robust-

ness of machine vision applications. But again, there are algorithms which can improve the

camera’s exposure in software, one of which is described here. As it is generally the case that

illumination affects large areas while a surface’s texture is finer, an estimate of the average

exposure of a pixel can be gleaned from looking at a weighted average of the pixels around

it. If the weighted average is treated as the level of illumination, then the pixel’s intensity

can be updated accordingly such that all pixels in the scene have more equal illumination.

This forms part the ideas proposed by Land in his Retinex Theory [142]5. The author has

implemented a simple example of this algorithm, the results of which are shown in Figure

6.2. While the image cannot be perfectly restored, the algorithm is capable of reducing some

of the blocked up shadows; the contrast boost may be enough to permit image processing

algorithms such as edge detectors to find features where they would otherwise fail.
4The Sigma SD14 is intended to be better in this regard since it uses an unconventional sensor using a separate

element for each of the three colour components instead of a single one; however, camera manufacturers generally

do not publish the dynamic range of their sensors.
5Edwin Land, founder of Polaroid and prolific researcher, developed his retinex theory after conducting ex-

periments which showed people can perceive colours in an image even when that colour isn’t used at all by the

illuminant. He stated the perceived colour is not absolute, but depends on the surroundings. Although this 50

year old discovery undermines parts of the prevailing understanding of how we see colour, Land’s research is

often absent from textbooks.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 146

Figure 6.2: The two images at the top are both poorly exposed. However, it is possible to

recover the image to an exposure more akin to the perception of a human, using a software

exposure compensation algorithm (see text). Some colour information is lost, however, due

to the 8-bit nature of this image.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 147

This completes this author’s brief foray into the world of colour constancy and exposure

control. Although there are many other more complex approaches, these techniques can, at

least, aid the perception of an image by making some parts visible, and providing a degree

of the consistency which is vital for the robustness of learned vision approaches. Later in

this chapter we shall consider some vision tasks which may benefit from colour constancy

pre-processing, and investigate whether the these algorithms produce more robust solutions.

Appropriate Colour Spaces

Having discussed how images might be rendered more consistent before processing, we turn

to the numeric description of colour itself. The traditional way to express a colour in compu-

ting environments is dictated by the construction of display hardware which present a colour

in terms of its red, green, and blue components. The intensity, or brightness, of a given colour

can be calculated by performing a weighted sum of each component. The weights are chosen

that match most closely our own perception6, accepted values are generally in the region of:

I = 0.3R+ 0.59G+ 0.11B

The benefit of using RGB values is that intensity can be computed rapidly using the above for-

mula; however, the additive nature of RGB space means that none of the three components

is independent of the illuminant’s intensity, which leads to issues of robustness with regard

to illumination and object geometry. Illumination originating from a point light source will

shine with different intensities on most 2D or 3D surfaces since all points are not the same

distance from the light source (see Figure 6.3). Directed lighting in general will illuminate

a three dimensional shape in different ways according to its geometry. Thus while an object

may be composed entirely from the same material, the RGB components are neither illumi-

nation or geometry invariant; algorithms using them may be prone to over-segmentation.

Consequently, raw RGB components are not used by the author’s system.

However, RGB may be used as the basis for producing different colour spaces. Many com-

6The cones (colour sensors) in the human retina have different sensitivities to different wavelengths. The most

sensitive cones are those that respond to green light, while the least sensitive are those that respond to blue light.

This ratio is taken into account in the formula above. Since yellow is regarded as the combination of red and

green, the two most sensitive wavelengths, this makes it the most suitable colour for high-visibility clothing.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 148

Figure 6.3: Planar surfaces will generally receive variable illumination from point lighting,

the geometry of non planar objects will cause different parts of the object to be illuminated

differently.

puter vision researchers choose to use colour spaces which separate the illumination com-

ponent of a colour wholly or partly into its own independent channel. Hue/Saturation/Inten-

sity (HSI) is one space which partly fulfils this criterion, defining a colour according its shade,

its saturation (“strength of colour”) and overall illumination intensity. HSI colour components

make potentially more succinct information about the pixel’s colour available to the learning

system making each feature inherently more useful. Although the conversion from RGB to

HSI is reasonably straightforward there are other RGB transformations that also benefit from

more illumination invariance.

Since Hue and Saturation are less affected by changes in illumination intensity or shadow,

the features are generally considered more robust, although the Hue value is unstable along

the entire achromatic axis, and unsurprisingly is best avoided in grey-scale images. The

author’s system can automatically detect the use of grey-scale images; in these cases colour-

based features such as Hue are disabled.

Although RGB components in their raw forms pose disadvantages, they can be readily

used to generate different colour features. For example, they are often normalised as follows:

R =
R

R+G+B

G =
G

R+G+B

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 149

B =
B

R+G+B

Since the RGB space is additive, the total intensity can be estimated by summing each com-

ponent. Dividing each component by the intensity estimate gives a value that should be less

affected by the intensity of the illumination. Although the colour of the light itself will still

have an effect, this may be mitigated by colour constancy pre-processing.

Other easily computable models include the c1c2c3 model by Gevers and Smeulders [143]:

c1(R,G,B) = tan−1

(
R

max(G,B)

)

c2(R,G,B) = tan−1

(
G

max(R,B)

)

c3(R,G,B) = tan−1

(
B

max(R,G)

)
This model is sometimes used for shadow identification owing to its illumination invariance

due to the geometry of the object, although this only applies to illumination by white light.

The l1l2l3 model [143] is also used, as it is invariant to specular highlights:

M = (R−G)2 + (R−B)2 + (G−B)2

l1 =
(R−G)2

M

l2 =
(R−B)2

M

l3 =
(G−B)2

M

In common with any feature derived using a division, the normalised RGB operators are

unstable near the black vertex of the RGB cube. The best that can be done is to ensure that

no divide-by-zero errors occur. HSI values, normalised RGB values, c1c2c3, and l1l2l3 are

made available to the GP segmenter as channels, using which any image statistic may be

computed. Of course, statistics typically require the input from a number of different points;

features which combine data from many pixels are discussed in the following section.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 150

6.3.2 Texture Features

So far we have discussed single-pixel features, which can only be meaningfully described by

their intensity or colour, and are limited to a few reasonably straightforward design choices.

This section will deal with features that combine the inputs from an area of pixels near to a

central point of interest.

A benefit of multiple-pixel features is their potential to describe the spatial context around

a point of interest, otherwise known as pattern or texture. Although colour or intensity

information is often useful in segmentation, in low contrast or grey-scale images the texture

of different objects may be the only suitable discriminant. One example is the distinction

between human skin and wood, which are quite often to be found in close proximity yet may

appear very similar in terms of colour alone.

One approach is to provide the feature detector with the intensity and other colour infor-

mation regarding every pixel in a region surrounding the central point of interest, and leave

the GP system to invent texture discriminants of its own. Given arithmetic, statistical and lo-

gical operators, it is perfectly possible that the GP system could evolve a form of convolution

mask. Since no data are lost, it is possible to develop a measure that accurately represents

the texture. We saw in Chapter 2 that Song and Ciesielski [83] compared this approach to

evolution using Haralick statistics (covered shortly) as image features. The problem is that

a relatively large number of pixels is required in order to produce a discernible pattern, and

typically each pixel is represented by one terminal in the GP tree, so the evolved programs

would have to be relatively large in turn. Given sufficient time, a learning system may disco-

ver useful ways of combining pixel data to develop texture features, but it may longer than

the genetic programmer is prepared to wait! This kind of approach, attractive in some senses,

is thus unlikely to be a practical solution. Indeed, Song and Ciesielski found that the Haralick

features yielded more accurate results.

Therefore, the requirement of texture features is that they should reduce the dimensiona-

lity of the data by processing a number of pixels together in order to arrive at a single statistic

that concisely represents a notion of texture. Since several features may be used for each

pixel, their processing should be as fast as possible to ensure that the learning process can

proceed and that the eventual program can operate in practical circumstances.

One family of texture features are those which produce averages of colours by using a

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 151

n × n mask to convolve pixels in some way. Common examples include Gaussian, Laplacian

and Sobel Masks. Gaussian masks may yield an intensity estimate that is more robust to noise,

while Laplacian and Sobel masks are useful in detecting edges and their direction. Different

masks with different weight matrices can easily be applied, permitting the segmenter to dis-

cover edges, or identify certain basic patterns. Although convolution masks are typically used

to emphasise certain parts of an image, they don’t give much indication of texture, as their

primary effect is to blur or discard spatial data, or match specific patterns.

Other descriptors of texture may be imagined quite readily. Indeed we saw in Chapter

2 that GP researchers have made use of a number of ad hoc features. Possible descriptors

include the difference between neighbours’ intensity values, which may give an indication of

the contrast of the texture, the arrangement of neighbours may that reveal the directionality

of patterns within the texture. The rate of intensity change across a series of points could re-

veal the roughness or smoothness of the texture. Given a set of pixels, one obvious approach

is to calculate the variance in value of a particular channel, which gives an indication of the

smoothness. Other straightforward statistics such as the range may be used to get an impres-

sion of the contrast in that area of the image. The number of edge pixels in a particular area

may provide some indication of the “busy-ness” of the image, and the directions of each may

provide useful, relatively scale invariant information about the nature of the texture itself.

Although simple, these calculations may be computed more easily than other techniques and

may still provide useful discriminants.

One of the most well-known texture analysis methods computes texture descriptors from

Grey Level Co-Occurence Matrices (GLCM). A GLCM records probabilities between different

intensity levels given a particular spatial relationship between two pixels, for instance the

relationship between one pixel and the pixel directly below or above it. Each GLCM can be

used to calculate a variety of different texture metrics, known as Haralick Statistics, some of

which are summarised in Table 6.1.

While the GLCM is relatively easy to understand and calculate, its usefulness is somewhat

dependent upon the quantisation level of the image. For 8 bit images, producing 256 separate

grey levels, the matrix will require a 256 × 256 array, which is resource hungry, especially if

the process must be repeated for every point in the image. With an array of this size the

matrix will inevitably be extremely sparse, unless the area surrounding the pixel is expanded

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 152

Contrast Contrast is measured by the sum of GLCM probabilities,

weighted according to their distance from the diagonal

point of the GLCM (the further the distance from the dia-

gonal, the higher the contrast).

Angular Second Moment Calculated from the sum of squared probabilities, high va-

lues provides a measure of the “orderliness” of the texture

since high probabilities (definite patterns) will be emphasi-

sed, and low probabilities will be minimised.

Entropy Gives an indication of the “disorderliness” of the image by

summing the natural log of each probability, which gives

highest weight to low probabilities.

GLCM Mean Measures the average probability of whatever relationship

the GLCM is measuring. Horizontal and vertical GLCMs may

produce different means.

GLCM Variance Measures the Standard Deviation of GLCM probabilities and

is similar to the entropy measure. A completely uniform

image will have a GLCM variance of zero.

Table 6.1: A Description of Several Haralick Statistics

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 153

significantly, although this in turn will produce a “border” effect around the edges of the

image and reduce the feature’s ability to localise. The practical reaction is to quantise the

image intensity values into larger ranges, although this has the drawback of de-sensitising

the matrix to more subtle changes.

Haar-like Features

Haar-like features are used for object recognition rather than analysis of texture per se. Al-

though some objects are deformable and may be better identified by texture, shape is often

a useful descriptor. A differential operator, Haar-like features compare two or more adjacent

rectangular areas within a portion of an image. For each area the sum of pixel intensities is

calculated; the feature returns the difference between different areas. The feature can be in

any location or scale relative to a central decision point. Haar-like features were populari-

sed by the work of Viola and Jones [3], who used them for face detection. Viola and Jones

invented additional features, composed of three and four sub-rectangles (see Figure 6.4 for

some examples). The principal advantage of Haar-like features is that they can be computed

readily using an integral image (p. 141). The integral image can be manipulated to return

sums for rectangles tilted at 45◦, which may be useful in some applications.

The disadvantage of Haar-like features is that they cannot be used "out-of-the-box", as

it were. The parameters that identify useful Haar features in terms of their position and

scale need to be determined first, and this process may also be processor intensive. Typically

a parameter optimiser such as a Genetic Algorithm is used to identify the parameters that

define useful haar features.

In order to render Haar features more consistent, the author’s implementation divides the

differential result by the area of the feature, such that the result of any feature will occupy

the same numeric range (0-255).

Dissociated Dipoles

“Dissociated dipoles” are similar in nature to Haar-like features, except where the comparison

made between adjacent rectangles is inherently local in nature, dissociated dipoles make

comparisons between different areas of the image, which may be far apart. In some ways this

is a more flexible structure than Haar-like features. The original dissociated dipole was an

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 154

Figure 6.4: Some examples of 2/3/4 rectangle Haar-like features. The darker rectangles

correspond to those regions that are subtracted.

operator that measured the differential between two gaussian convolution masks of variable

scales and locations.

Again, dissociated dipoles require their parameters to be chosen according to the visual

problem, in a process of feature extraction. The author spent some considerable time looking

into this, including using genetic algorithms and other search procedures. The solution even-

tually devised by the author was to develop a new type of GP terminal node which includes its

own parameters. The node can initially choose random parameters for itself (within sensible

limits), and subsequently generates different features using a similar procedure to produce

a population of features. Given a score, the node can go about a hill-climbing technique

to improve its discriminative abilities. This technique is integrated into the author’s feature

selection and extraction interface which is covered in the following chapter.

6.3.3 Location-Based Features

A more straightforward family of features gives an indication of the pixel’s location within

the image. These features include the distance of the pixel from the centre of the image, and

the angle thereof. Certain problems in vision may pay more attention to those objects closer

to the center of the image than on the outer edges. Many problems, however, will not require

such features; the feature selection technique employed by the authors toolkit (see Section

6.4) will remove these features if not needed.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 155

6.3.4 Other Features

By now we have covered a variety of different image operaetors, each of which are made

available to the author’s GP system for the purposes of evolving a feature detector. Other fea-

tures include the author’s DistanceFeature which computes the Euclidean distance between

the entire current input feature vector and a known feature vector from the training set. This

allows GP to create solutions slightly similar to k-nearest-neighbour, which is often surprisin-

gly effective at finding solutions. Unlike k-NN, however, the distance of only one vector may

be checked at a time, so the feature instead provides another means of non-linear transfor-

mation.

6.3.5 Invariance

Integral images make it possible to compute Haar-like features efficiently. Indeed it is this

kind of feature that makes it possible for modern digital cameras to recognise faces in real

time, despite their limited processing capabilities. Although they can be used to approximate

circular regions, rectangles are generally not rotation invariant, which limits their applicabi-

lity for certain problems.

If we confine ourselves to the recognition of 2D objects from a top-down perspective, then

rotation invariance can be achieved by using circular features. The disadvantage is that they

cannot be computed so quickly, although they can be approximated. One may use either

completely circular features, rings, or circular perimeters. The latter were used by Roberts &

Howard [18] for recognising vehicles and ships from satellite images, with some success. The

author prefers perimeter based-features, because they involve fewer pixels and are therefore

more efficient to compute. Various calculations can be made from each perimeter, including

the mean and standard deviation of pixel intensity. Perimeter features can also calculate the

number of edges they encounter: an “edge” is detected if the difference between two adjacent

pixels’ intensity is larger than half the image’s standard deviation.

For some problems it is not necessary for the feature detector to be rotation invariant. In

the following chapter we shall see examples of features which lend themselves to rotation

invariance more elegantly.

The scale invariance of certain features may be measured by scaling them (and the image)

up and down to see whether they return a consistent result. An experiment was run for this

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 156

Figure 6.5: Measuring the invariance of certain features to changes in the image scale. As

the image approaches half its original size, some features’ output deviates by over 30%. The

perimeter, which increases in size while maintaining a single pixel thickness is naturally most

prone to deviations of scale. Other features such as the mean, unsuprisingly, are very robust

to changes in scale.

purpose, using a number of image points and a selection of 6 straightforward features, which

calculate the means and standard deviations from horizontal and vertical lines, and from

circular perimeters. The average deviation of each feature from its value at 100% image size

is plotted in Figure 6.5. As one can see, many of the ad hoc features do not produce invariant

results at different scales. As one might expect, the mean is largely unaffected by changes

in scale, so mean-derived descriptors, such as the Haar-like features should produce similar

robustness to changes in scale.

A common approach to scale invariance is through the use of a framework referred to as

“scale space”, which considers an image at various different scales, following convolution by

a gaussian mask of different sizes. By this method can reveal those points which are apparent

at all scales in the image, so is commonly used in feature point detection techniques, such as

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 157

SIFT [58]. Once these features have been detected, they can be used for a variety of tasks,

including object detection.

However, it is less straightforward to adapt existing features into scale invariant ones,

since most are inherently local in nature. One reaction to this is to define the scale of features

themselves according to some window. The window can then be applied to images at different

scales in order to find objects or features of different sizes. The author’s segmentation features

may be defined in terms of position and location within an arbitrary window, expressed in

percentages.

To summarise, the author’s feature detector has access to approximately 60 different

image features, including image intensity, normalised colour operators, Haralick statistics,

Haar-like features, dissociated dipoles, rectangular, convolution operators and linear and cir-

cular area statistics.

6.4 Feature Selection

Given the large number of potential features that with which one could describe an image, a

few of which have been described above, it is worthwhile to identify those features that may

be redundant or irrelevant. Motivations for eliminating “useless” features include avoiding

the so-called “curse of dimensionality”, the effect in which the search space grows exponen-

tially as extra features are included. Learning only using relevant features may also improve

the learned system’s ability to generalise, as its outcome is dependent only on true discrimi-

nants. Finally, in the spirit of Ockham’s Razor, feature selection can help make the classifier

more efficient, both in terms of final execution speed (fewer features need to be calculated

for the classifier to make its decision), and the rate at which the classifier can be learned in

the first place.

Two schools of thought dominate feature selection techniques: filtering and subset selec-

tion, discussed in the following paragraphs.

Filtering The first approach is concerned with evaluating features individually. Features are

usually scored against certain criteria, with the top n being selected for inclusion within the

feature vector. The criterion may involve measuring the variable’s linear correlation with the

ground truth, or indeed their individual predictive power when used by a classifier such as

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 158

Linear Discriminant Analysis (for binary sitations).

Other metrics aim to assess “usefulness” in more concrete terms, for instance by calcula-

ting the information gain of a feature, which is defined as the difference between the entropy

of the training data H(Y), and the average conditional entropy H(Y |X) given a particular

feature X . The larger the information gain, the more useful is the feature X.

A criticism is that these techniques do not generally consider the correlation between dif-

ferent variables, which may lead to a feature set characterised by a high level of redundancy.

Some techniques, such as [144], aim to maximise relevance while minimising redundancy by

developing a more complex scoring system that takes both into account.

Subset Selection A distinct approach is to consider the set of features as a whole, without

trying to assess the usefulness of each variable individually. The rationale is that simply

because a feature doesn’t perform well against some metric individually doesn’t mean that it

doesn’t have any merit.

A straightforward technique in this regard was reviewed in a popular paper by Kohavi

and John [145], involving the “wrapping” of learning machines as black boxes. The black

boxes were used as evaluators for different variable subsets. Since our perception of what

should make a useful variable will not necessarily translate into a positive outcome for the

solution, this method dispenses with any arbitrary scoring and focuses instead on a more

direct predictor of success.

This kind of approach attracts its own criticisms for being rather brute force in nature.

Putting to one side the idea that an exhaustive search could lead to over-fitting on the trai-

ning data, for all but the simplest problems the computational expenditure required makes

exhaustive search impractical.

It appears that the rough search strategies implemented by greedy hill-climbing algo-

rithms seem to do well instead, both in terms of alleviating over-fitting and preventing the

computation from becoming intractable. Forward selection, by which features are added to

the dataset one at a time, or backward elimination, by which features are eliminated one at a

time, appear to be effective greedy algorithms. Nonetheless, Genetic Programming is already

slow enough, so the author chose not to use wrapper methods for feature selection, favouring

the individual filtering algorithms which can be executed in a matter of seconds.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 159

In any case, one of the advantages of Genetic Programming is that it permits a reasonably

large library of features to be used; feature selection is a consequence of the breeding model.

The nature of genetic learning systems is to breed the useful solutions more often than the

useless useful ones, so a viable form of feature selection is already included. In any case,

genetic programs are under no obligation to use all the features available, and the usual

fitness criterion favouring smaller individuals may help to ensure solutions are as general as

possible7.

6.4.1 Experiments

Nonetheless, with an expanding set of image features, it is worthwhile investigating which

are most useful for a particular task. Conversely, one can consider feature selection as a

means for removing irrelevent features that may affect the ability of a classifier to generalise

or operate efficiently. At this point it is necessary to move away from the public datasets and

their fixed feature sets, and start using images directly to generate feature vectors. Over the

course of his research, the author has developed a number of image datasets for different

purposes; four of which are described below.

Flag Colours Dataset. Colour. 8 Classes The first dataset is concerned with the recog-

nition of different colours, taken from images of 16 different European flags. Images of each

flag were printed and then cut out to produce different cards. Images of each card were then

captured through a webcam8. The goal is to reliably identify the colours apparent in each

flag design.

Given the relatively poor reputation of webcams in terms of photographic excellence this

set provides a useful experiment to identify the robustness of vision algorithms created by

the author’s system, using everyday equipment in habitual environments. The samples in the

dataset are categorised into 7 classes, corresponding to 7 colours9 and a background class.
7In fact, without proper checks, GP programs will sometimes use none at all, and simply return the most

popular class.
8A Logitech Quickcam Pro 5000, a reasonably good quality camera, costing about £50 in 2007.
9‘Red’, ‘Yellow’, ‘Green’, ‘Light’ ‘Blue’, ‘Dark Blue’, ‘White’ and ‘Black’.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 160

Pipeline Dataset. Texture. 4 Classes The author’s pipeline dataset is derived from top-

down images collected from an unmanned aerial vehicle (UAV) at a height of several hundred

feet. The task is to identify automatically different regions within each image: ground, vege-

tation, water and buildings/roads/pipeline.

The pipeline dataset is a more useful assessor of segmentation by texture, as each class

cannot readily be distinguished by colour (the saturation of the images is quite low).

Leaves Dataset. Background Subtraction. 2 Classes The third dataset is concerned

with locating different types of leaf, photographed against a variety of cluttered backgrounds.

Images come from the Caltech leaves dataset [146]. This is a binary dataset with two classes:

leaf and not-leaf.

Pasta Dataset. Background Subtraction. 2 Classes This dataset is representative of

some kind of industrial inspection task. Like the leaves dataset, the primary task here is

background subtraction, permitting the localisation of objects.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 161

Three different feature selection techniques were applied to select features for each data-

set. Each was an attribute filtering technique, as opposed to a subset-selection method. These

were:

Linear Discriminant Analysis The feature’s ability as an independent discriminant was mea-

sured using Linear Discriminant Analysis (see page 132). The score was measured ac-

cording to the number of samples the LDA classifier could correctly classify using the

feature, using the fitness function error1 (see page 21).

Program Classification Map (PCM) The author’s implementation of a DRS2 Program Clas-

sification Map (see page 74) was used to convert the feature into a classifier. The score

was measured according to the number of samples the PCM classifier could correctly

classify using the feature

Information Gain (IG) The score of each attribute was measured by its Information Gain

(see page 158) with respect to the known classes, which measures the difference in

entropy between the training set and the output of the classifier on the training set.

Each feature selection technique was used to reduce the size of the feature set from 60

down to 20 features. Each attribute was individually scored, with the top 20 chosen to

form a new feature set, from which a dataset was produced. Both the reduced and original

datasets (using all the features) was then used as training data for the author’s ICS classifier,

which developed solutions in the usual manner for each. Each experiment was repeated 50

times; the results are shown in Table 6.2. In the Flags dataset there were no statistically

significant differences in performance on test data. In the Pipelines task, the reduced datasets

did produce, on average, individuals that were significantly better, although the absolute

difference was not huge.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 162

The numerical basis for an interesting observation is shown in Table 6.3 which shows the

percentage difference between the training error and test error for each dataset. For both

tasks, the difference is significantly higher when using the entire set than when using filtered

subsets. This indicates that classifiers developed using the reduced feature sets are able to

generalise better, perhaps because those irrelevant features that may affect generalisation

have been removed successfully.

In conclusion, the results on these tasks appear to show that the feature sets for feature

detection problems can be quite sharply reduced without causing any significant decline in

performance; indeed the performance of pipeline classifiers improved for all filtering algo-

rithms. With the desire to add more and more image operators to render a system capable of

solving a wide variety of problems comes the need to ensure that the feature sets are maintai-

ned at a manageable size, and it would appear that this kind of feature selection technique is

a suitable means for doing so. The observant reader will note that subset selection techniques

are not covered here: the author’s preference is to use filtering techniques that can calculate

the subset in seconds. A lengthy process of genetic learning, preceded by an even lengthier

feature selection operation would be likely to test the patience of the end user!

Having covered three different feature filters, a reasonable question is which is the most

useful. Based on the limited results provided here, a definite choice would be premature.

Nonetheless, the author has a preference for the PCM technique on the basis that it is fast,

and naturally shares much in common with the GP classifier itself, so would appear to be a

good model. As we’ll see later in this chapter, there are further uses for this type of feature

selection.

Task Entire Set Filtered (LDA) Filtered (PCM) Filtered (IG)

Flags 93.5 ± 3.5 93.9 ± 2.6 92.7 ± 2.6 93.9 ± 2.9

Pipelines 95.4 ± 0.5 95.9 ± 0.5 95.6 ± 0.5 96.3 ± 0.3

Leaves 97.6 ± 1.0 98.0 ± 0.6 97.7 ± 0.9 97.7 ± 0.8

Table 6.2: Comparing the average performance of classifiers, evolved using different feature

sets, on test data. Significant differences in bold, ± denotes standard deviation.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 163

Task Entire Set Filtered (LDA) Filtered (PCM) Filtered (IG)

Flags 7.39 2.17 2.32 3.16

Pipelines 14.16 0.61 0.37 5.34

Leaves 17.4 10.26 1.59 7.05

Table 6.3: Comparing the average percentage difference between classifiers’ training and tes-

ting performance (an indication of their ability to generalise), evolved using different feature

sets

6.5 Performance Considerations

Like GP learning, machine vision is often computationally expensive. If the former is used to

develop the latter, then it is doubly important to ensure that evolution can proceed as effi-

ciently as possible! We have already touched on various means by which the GP process can

be made more efficient, by decreasing population redundancy or employing integral images

and faster means of calculating statistics. Here we shall look at some further means by which

the performance of GP vision learning can be improved.

6.5.1 Image-Level Caching

Efficiency can be achieved both by ensuring the algorithms themselves are not computatio-

nally wasteful, and by minimising the number of re-calculations made, typically by caching

results.

Certain sub-trees become common in genetic populations because of the selective pressure

imposed on good individuals, leading the crossover operator to repeatedly copy certain sub-

trees of popular parents. An approach taken by Roberts [147] to improve the speed of GP

on image processing problems was to cache the results of common sub-trees on the training

data (see [148]), saving the need to re-evaluate them continuously. While this technique

was shown to be quite successful, it was memory hungry: one value for every pixel on every

image for every sub-tree is stored, probably at least one byte in size. Accordingly, a cost-

based decision was made to determine which sub-trees should be included in the cache by

estimating the time taken to retrieve the cache from disk versus the time taken to make

the calculation in the first instance. Roberts reported decreases in evolutionary time were

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 164

measured between 1.5% and 52.2%, which is quite promising. Experiments were conducted

on a variety of different population sizes; the largest improvement was attained when using a

population size of 2000, rather larger than is generally used, and thus more prone to benefit

from any kind of caching as the population is more likely to contain a number of duplicate

sub-trees.

The author’s own caching approach takes place at the image level, rather than the sub-

tree level. Since image processing is the most significant bottleneck in learning vision systems,

it makes sense to cache the imaging functions themselves, rather than the sub-trees, which

often amount to little more than performing arithmetic operations upon underlying image

calculations. SXGP makes use of the author’s own imaging library which caches the results

of imaging operations so that subsequent processes can proceed more quickly. Basic pixel

metrics, such as the mean grey-value of an image may be called several times per pixel, for

instance by convolution masks. These are cached. The caches are implemented using one-

dimensional arrays which can be accessed efficiently. The results of other, more complex,

operations may also be cached.

Figure 6.6 shows the advantage and disadvantage of this type of caching, here implemen-

ted in two ways: “half” caching, in which only the most essential operations are cached10,

and“full”caching, where a variety of other results from more computationally expensive ope-

rations are cached. The figure shows that the time taken to process n images is significantly

lower for the cached methods, with “full” caching requiring the least amount of time ove-

rall. Caching permits the operations can be run on the images nearly three times faster than

otherwise.

While caching permits evolved programs to work efficiently during deployment, it is de-

pendent on large amounts of memory. In Java, the language in which SXGP is coded, every

integer or float requires 4 bytes of memory, so storing the result of any image operation on a

640× 480 image will require approximately a third of a megabyte, assuming Java is memory

efficient11. While this is not too much of a concern for vision applications which typically

look at one image at a time, it may be overwhelming for the Genetic Programming training

process, in which all the images (and associated caches) are typically held in memory at the

same time.
10Grey-scale, Red, Green, Blue, Hue, Saturation, Lightness.
11It isn’t.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 165

Accordingly, the right graph in Figure 6.6 shows the memory requirements of each caching

technique – the “full” caching technique requires up to 9Mb per image, which could charitably

be described as a limitation on the number of images that could be used in training12.

The problem is exacerbated by the bluntness of the caching mechanism, which is intended

for operations on the whole image. The training data, by contrast, may only comprise a small

number of chosen pixels from each image. Nonetheless, the cache is calculated for the whole

image, which is wasteful.

The author’s solution is: another level of caching! The idea is to pre-compute the outputs

of the feature set for every pixel in the segmentation training set, and store them in a separate

dataset structure, the same used to represent the public datasets used throughout Chapter

5. Not only does this permit solutions to both public datasets and imaging problems to be

evolved by exactly the same system, the dataset structure requires significantly less memory

per image, as only the pixels part of the training set are included.

To implement this approach the terminal nodes in SXGP trees are able to execute in either

of two modes: the first using the pre-computed values from the dataset, the second calculating

the feature directly from the image as before. This permits the GP system to produce “live

previews” of the segmenter on test images, while training on a precomputed dataset that

doesn’t use images at all.

It must be acknowledged, however, that this strategy is not limitlessly scalable. In the

author’s current implementation, the dataset resides entirely within memory, some huge da-

tasets would still be too large to accommodate. Experiments involving the selective culling

of training data, to ensure speedy and feasible evolution, await the reader in the following

chapter.

6.5.2 Fitness Caching

The author, whose enthusiasm for caching continued unabated, went on to invent a different

form of caching, similar in spirit to that of Roberts [147] but with a lower memory overhead.

The approach, termed “fitness caching” ensures that some needless evaluations do not take

place.
12The images in this case were 320 × 211 in size. Uncharitable descriptions of this level of memory usage are

left to the reader’s imagination.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 166

Figure 6.6: Comparison between different levels of image caching in terms of performance

and memory usage.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 167

As was discussed in Chapter 5, a feature of the ramped-half-and-half tree builder (see

section 2.3.2) is that it generates a number of duplicates. This is because the builder generates

a fixed number of trees at every tree depth; since there are fewer small trees than large trees,

a number of them will not be unique. A plot of the proportion of duplicates in a randomly

generated population of different sizes is shown in Figure 6.7. We have also seen that any

selection technique will bring about a reduction in variability. Despite the vastness of the

search space, the paradox is that there is always some degree level of duplication within a GP

population.

The author’s image caching mechanism ensures individuals can be processed quickly, but

there is a further saving to be made. Given that it isn’t computationally practical for the

tree builder to ensure that every tree is unique, it makes sense to attempt caching on a per-

individual level, rather than a per-sub-tree level. This requires much less memory, and means

the duplicated individuals do not have to be evaluated at all. Instead of caching the output of

the tree on each data point, which is memory intensive and still requires the entire training

to be iterated through, the author’s technique simply caches the final fitness value of the

individual, on the basis that two identical individuals must be allocated identical fitness.

Each individual’s structure is given a unique code, by taking the hash code of its LISP

expression13. When an individual is evaluated, a record of the fitness for its code is recorded.

Subsequent evaluations start by checking the record first; a “full” evaluation only proceeds if

fitness hasn’t already been calculated for that individual.

The results of an experiment comparing performances with and without fitness caching

are summarised in Table 6.4. The results show that fitness caching is able to achieve up to

an additional 14.4% reduction in processing time (6.2% on average). Although this improve-

ment is modest, it requires significantly less memory than other caching techniques and can

therefore be implemented in addition to any other caching mechanisms.
13The bracketed syntax of LISP is well-suited for expressing tree structures. It is acknowledged that hashing

functions are not guaranteed to produce unique codes. The author conducted an experiment in which 10,000,000

individuals were hashed. Individuals with identical hash codes were checked to see if their trees were the same.

No instances were found in which the hash code was not unique.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 168

Figure 6.7: The level of duplication in random populations approaches 25% when generated

by the standard ramped half-and-half population builder.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 169

Data Set Normal Fitness Caching Improvement

seconds seconds %

BUPA 35.35 32.52 8.7

Heart 28.63 26.66 7.4

Glass 62.46 61.85 1.0

Iris 22.74 21.83 4.2

Pima 51.82 49.31 5.1

Thyroid 102.47 94.27 8.7

WDBC 25.07 21.92 14.4

Table 6.4: Comparison of average runtimes of a 250 member popupation over 25 generations

with and without fitness caching. Fitness caching can produce a performance increase of up

to 14% on classification datasets.

6.5.3 Deployment Procedure

A further performance enhancement is initiated following the evolutionary process. In com-

mon with most Genetic Programming systems, the author’s toolkit represents programs as

trees. Since Java is a compiled programming language, the Java process cannot execute

programs written during runtime, so the tree must be executed by an interpreter which tra-

verses the tree according to the logic of the nodes. Once the Genetic Programming process is

completed and a suitable program discovered, it is desirable to dispense with the interpreter,

both to remove its computational overhead and to disentangle the program completely from

dependence on any Genetic Programming libraries.

Following any tree optimisation operations enacted upon the tree, the author’s toolkit

begins the process of deployment by converting the optimised tree to Java source code. Each

node implements a toJava() function, which translates it into Java source code, and in general

each node will produce a single programming statement. A source interpreter runs on the

tree and combines the statements together, before adding the headers and footers to make

a complete java program. Any functions that are used more than once within the function

are cached inline. The Java compiler is then instantiated to compile the source into Java

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 170

byte code, which may then be executed by the Java runtime. Finally the compiled class file

is loaded back into the Java virtual machine as an instantiated class that can be run on any

vision problem.

Figure 6.8: The deployment procedure for converting a GP tree into a compiled Java class,

which typically runs about 20% faster.

Although this process is too involved to be run during the GP run, it yields “pure” Java

programs which run faster than interpreted ones and are reliant only upon the author’s ima-

ging libraries. The Java process doesn’t need to be restarted, so the program can be used

immediately. Experiments (summarised in Table 6.5) show that, on average, the compiled

programs execute between 20–30% faster than the equivalent interpreted versions.

6.6 Experimenting with Preprocessing

Earlier in this chapter the author described several straightforward algorithms intended to

achieve consistent colour constancy and better exposure control. There were a couple of

subjective demonstrations of these algorithms in Figures 6.1 and 6.2, but it seems worthwhile

to devise a general, objective means of assessing the usefulness of preprocessing algorithms.

In this section, we shall present the results from a limited set of experiments that demonstrate

some of the effects of the colour constancy algorithms.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 171

Data Set GP Tree Byte Code Improvement

ms ms %

Flags 273 218 20.0

Pipelines 175 127 27.2

Leaves 320 218 31.8

Table 6.5: Comparison between the average performance of interpreted GP trees and compi-

led java programs, when running on the vision system datasets. The compiled version yields

a performance boost of between 20–31.8%

We have already seen several of the author’s own image datasets, including the straight-

forward Pasta dataset and the Flags dataset (see page 159). The Pasta dataset equates to

an industrial inspection task, and has relatively consistent illumination. The Flags dataset,

by contrast, is primarily a colour recognition task, so each image was captured at different

exposures and white balances to ensure robustness.

In this section, we shall investigate whether the colour constancy algorithms can affect the

quality of classifier evolved by Genetic Programming. Two datasets were generated for each

task, each using the same set of training data points. In the first experiment the images in

their original form were used; in the second experiment the images were pre-processed first

using the grey-world colour constancy algorithm14. All other parameters were identical. GP

runs were then performed on each dataset. The results are shown in Table 6.6 and graphically

in Figure 6.9.

Perhaps unsurprisingly, the colour constancy technique has little effect on the Pasta da-

taset, which features very little variance in illumination, and in any case already achieves a

respectably low average error. On the Flags dataset, however, the difference is marked: the

error is reduced from a rather high level down to a much lower level (accuracy was 98.5%),

which is a substantial improvement. Inspection of the images before and after preproces-

sing reveals why – much of the inconsistency in the training data has been removed by the

grey-world algorithm. Although the pre-processed images do not really represent our own
14The white patch colour constancy algorithm was not used – requiring the continual presence of white objects

is something of a restriction for a generic vision system builder!

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 172

Data Set Unprocessed Preprocessed

Pasta 0.001 0.001

Flags 0.173 0.015

Pipelines 0.094 0.145

Leaves 0.030 0.060

Table 6.6: Measuring the effect of the author’s colour constancy implementations on four

segmentation datasets. Shown here is the average error for each dataset after 25 runs apiece.

perception of the images, they may render a series of differently exposed images to a much

more consistent intermediate.

However, for the Leaves and Pipelines dataset, the preprocessing operation makes the

classifier significantly worse. This is perhaps because the types of images in these datasets do

not fit the assumptions underlying the grey-world assumption.

We have seen that colour constancy algorithms can make a substantial difference to some

datasets, sometimes beneficial and sometimes detrimental. Given the significant improve-

ment on the Flags dataset, it is preferable to involve the colour constancy algorithm where

suitable, but a decision must be taken whether to run it or not. Running a colour constancy

algorithm that doesn’t yield any improvement only adds to the computational burden of the

vision system, and may even decrease the accuracy. Since this is a generic system, it would

be nice to decide whether certain preprocessing operations are useful prior to running the

GP process, preferably in an automatic manner. Fortunately, it appears the colour constancy

algorithms also have a effect on the author’s feature selection techniques – the average fea-

ture “score” was improved by between 8–20% for the pre-processed Flags dataset, but at

remained unchanged for the Pasta dataset. Similarly it was worsened on each occasion for

the Leaf and Pipeline datasets. There would, therefore, appear to be a mechanism for quickly

identifying the usefulness of certain preprocessing techniques automatically, using any of the

feature selection techniques discussed. All feature filters gave similar results, but Information

Gain provided the clearest distinctions in value, shown in Table 6.7.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 173

Figure 6.9: The outcomes of the evolutionary process, with and without grey-world colour

constancy pre-processing. For the Flag dataset the reduction in error is significant. In other

datasets the pre-processing either has a neutral or damaging effect.

6.7 Applications of Segmentation

In this chapter we have covered the design of a generic feature detection system, the means by

which image datasets may be produced from suitable image features, techniques for ensuring

the evolution and execution of the detector can proceed rapidly.

This chapter is concluded with some images showing examples of the applicability of the

feature detector. Although numerical results are provided, it is difficult to make empirical

comparisons to other work since it is not often possible to access the same datasets. Nonethe-

less, the idea here is to present how the author’s software may be applied those problems for

which a result of publishable quality has already been presented by GP researchers in the past.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 174

Data Set Unprocessed Preprocessed

Pasta 0.471 0.472

Flags 0.249 1.525

Pipelines 0.865 0.721

Leaves 0.374 0.340

Table 6.7: The average Information Gain by the top 20 features for a given task, with and

without colour constancy preprocessing. The difference in error correlates with the actual

results, so Information Gain can be used to assess whether preprocessing should be used or

not.

The objective is to explore the applicability of the feature detector to a range of domains; it

is left to the reader to assess the quality of the results on a subjective basis. All images below

are unseen by the feature detector.

6.7.1 Skin Segmentation

Computer vision has a large number of applications within the domain of medical imaging.

The overwhelming majority of these images must be examined by an expert radiologist, on-

cologist or other specialist. The consensus is that it would be of great use if computers could

be used to automate the process in some way. Accordingly this field has received a lot of

research, including by researchers using GP. Roberts and Claridge [81] used GP to develop a

segmenter for the purposes of skin segmentation, specifically to segment those areas of skin

described by medics as lesions.

Given a set of 100 images carefully hand-segmented by an expert as training data, they

evolved a program that could perform similar segmentations using just eight images as trai-

ning data. The detector achieved a sensitivity of 88% and a sensitivity of 96%, and was able

to run on images approximately 600× 400 in size within 4 seconds. Although the author was

unable to acquire the same dataset, it was possible to obtain a similar set of images from a

series of online dermatology databases, from which 8 were chosen as representative training

samples. The author’s generic system evolved a segmenter within 10 minutes that achieved

an accuracy of 94.3% and was able to run in under a second on each image.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 175

The results of the feature detector are shown below, in each case identifying the boundary

of the lesion. The bottom set of images are benign in nature, while the top images are

cancerous legions referred to as malignant melanoma.

6.7.2 Terrain Segmentation

The author’s pipeline dataset has already been described in this chapter. It is composed of

several hundred time-lapse frames captured from a camera in an unmanned aerial vehicle.

The purpose is to identify gas pipelines in the image which require human inspection on

a fortnightly basis in order to meet US safety and environmental standards. The author’s

feature detector was trained to identify several other features in the scene, including vegeta-

tion, roads and water. This information may be helpful in identifying the nature of potential

problems with pipelines. The author’s system evolved a segmenter over the course of 100

generations, which took 18 minutes per run, on average, achieving an average accuracy of

89.9% on labelled areas of unseen test images. The results on two frames are presented

below:

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 176

Without a means of assessing this result in a comparative manner, we shall instead consi-

der its utility for further stages of processing. The detection of pipelines themselves can be

performed by taking the output of the segmenter on one class channel. Following skeleto-

nisation, the output is shown below. Since the detection of pipelines in these images is very

much related to edge detection, it is worthwhile comparing the effort of a generic benchmark

edge detector – such as that of Canny [62]. A comparison between the two is shown below.

The first observation is that the evolved detector is more specific with regard to the pipe-

lines than is Canny’s detector. Furthermore, the detector can be trained to detect the edge

along the centre of each pipeline, rather than at its edge, which yields only one response

per pipeline, which is more helpful. A Hough transform may be used to identify the straight

pipelines.

Of course, Canny’s detector is generic and the author’s feature detector is evolved with

specific training data in mind, so the comparison is mean spirited in some ways. Nonethe-

less, the point is that domain-specific approaches can be more valuable for certain applica-

tions than the equivalent generic algorithm – provided that domain-specific approaches are

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 177

straightforward to develop. The detector in this instance was developed in approximately 5

minutes by GP, following approximately one hour producing training data.

6.7.3 Object Detection

Roberts and Howard [92, 18] developed a rotation invariant object detector using GP for

the purpose of recognising various vehicles from infra-red satellite images. So far we’ve seen

examples of segmentation, so it is worth investigating whether the author’s approach is appli-

cable to more specific objects which themselves may consist of hundreds of pixels. In a brief

experiment, a number of images of San Francisco were downloaded, in which over 600 cars

were identified. Each car was labelled using the author’s software, and a segmenter evolved.

Half the images were reserved for testing. Although the detector yielded multiple responses

per vehicle, producing a set of blobs, the author’s shape processing software (covered in the

following chapter) was used to identify the centre of each, the results on a test image are

shown below; the sensitivity was 97.6% and the specificity was 91.8%.

6.7.4 OCR Segmentation

One area in which computer vision has already excelled is Optical Character Recognition

(OCR), in which letters and words in images are identified automatically to be converted

into ASCII text. The segmentation of black text against white paper is reasonably straight-

forward – techniques such as adaptive thresholding generally are often sufficiently accurate.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 178

In Chapter 4 we also saw two other common approaches to automatic thresholding used in

mainstream computer vision. Although the author’s software is able to segment letters, it is

an instance of wheel-reinvention, so is not covered here. We will, however, see an example

of handwritten character recognition on the MNIST dataset in the following chapter.

Other OCR tasks, however, are more challenging from a feature detection perspective.

Quintana et al. [85] tackled a more interesting problem of extracting musical notation from

an image, a problem made more difficult by the overlapping nature of musical notes, staff

lines and other notations. Quintana used GP to evolve mathematical morphology operations

to extract each. The authors were able to develop a detector for the purpose of classifying

note heads to an excellent degree of accuracy, but detecting beams and staff lines was more

difficult. It was particularly difficult to evolve a staff line detector with the required level of

specificity.

This author has also tried out this experiment on a series of images. To make the problem

more challenging, the images were captured from photographs of printed sheet music using

a webcam instead of purely electronic versions. The author’s detector was applied to the

classification of the same three features, and was able to discover solutions to each all using

the same multi-class detector, shown below.

6.7.5 Conclusion

In the last chapter we saw how the author’s feature-detection approach can be employed

for the extraction of different features from images. Some are based on colour, others on

texture, and others by their context. The author’s generic learning system has been applied

to develop specific solutions for several tasks where previously GP researchers had developed

custom features specific to each problem. Although the image datasets are not available for

direct comparison, the author claims that the solutions developed using the generic system

are equivalent.

CHAPTER 6. GP FOR LOW-LEVEL VISION TASKS 179

In this thesis, the detection of features is the beginning rather than the end – in the next

chapter we shall look at what to do with the output of the segmenter, and how to construct

multi-stage vision systems, rather than just vision components.

It has already been stated that numeric results on a particular dataset are not always en-

ough to give a good impression of a segmenter’s performance. The author would state that

a better measure of the performance is its utility – are the features that it detects sufficiently

reliable as to permit further stages of processing? In attempting to use one set of evolved so-

lutions as inputs to another, one soon appreciates whether the former is helping or hindering

the overall process! In the next chapter we shall see just what kind of tasks can be attempted

by multiple stage evolved vision architectures on a series of mroe complex datasets.

Chapter 7

A Framework for Evolving Solutions

to Vision Problems

Following a reasonably lengthy description of the author’s Genetic Programming toolkit, and

the means by which GP may be put to work in evolving classifiers, the preceding chapter

introduced a generic approach to feature detection in images. The author’s software is able

to produce similar results to those published by other GP vision researchers; indeed in some

cases the author’s generic system was able to evolve solutions to problems that other authors’

task-specific approaches had difficulty with. In this chapter the author’s approach is exten-

ded to render it more functional and capable of higher-level understanding. The concept is

to integrate one or more stages of feature detection into a larger vision system, providing a

basis for extracting more complex content from the image by secondary detectors and clas-

sifiers which have an altogether different nature. This secondary stage of processing will be

described shortly. The key point is that all domain-specific components of the vision system

are evolved by GP: the development of vision systems of this type appears to be novel.

The manner in which the different evolved components interact is determined by a straight-

forward machine vision architecture, of a type commonly used in conventional computer vi-

sion. In this chapter we shall describe the author’s approach [7], and demonstrate how it can

be used to tackle vision tasks. The framework itself is then extended to render it more appli-

cable to different problems. Toward the end of this chapter, some vision systems generated

using this framework shall be presented and assessed.

The final key component of the author’s software is a graphical interface that automates

180

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 181

and simplifies the process of evolving vision systems. It will be shown how training data

may be created to supervise the learning of the vision system components, and how a non-

expert user can generate working vision systems in a straightforward manner. In this chapter,

the idea is to bring together all the concepts discussed throughout the course of this thesis

and show how they can be integrated into one software system, capable of the automatic

construction of vision systems.

7.1 More Complex Vision

In the last chapter, the evolution of a generic feature detector was described and evaluated.

The results showed that the evolved programs were capable of finding a variety of different

features in images, based on colour, texture, and surrounding context. The examples presen-

ted give an indication of the kind of domains in which such a detector can be put to work.

Feature detection alone, however, is not always enough to yield the kind of high-level infor-

mation that an end user would appreciate – in many cases it merely highlights items within

the image that may warrant further inspection. In order for the vision system to be useful, it

should make some attempt to identify those detected features, at which point further auto-

mated processing by machine can be initiated. Here we shall move on from the detection of

features in general to the recognition and classification of particular objects.

7.1.1 Creating Objects

As we have seen, the feature detector makes an individual decision about every pixel in the

image, classifying it into two or more user-defined classes. When plotted into an image

this gives the appearance of segments, but first the pixels must be joined together into sets

for the computer to process them further. Homogenous areas of similarly classified pixels

are grouped together into rudimentary “objects”. Since the feature detection proceeds in a

supervised manner, each object can base its initial identifier on the feature classes invented by

the user. As well as providing a unique identifier for each, the user can also set whether a class

is useful or not. Those objects assigned to a “background” class are immediately discarded,

leaving only the objects of interest in the scene; see Figure 7.1.

This set of objects is the primary output of the feature detector. It identifies all objects,

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 182

Figure 7.1: Object Grouping – Taking the output from the segmenter and turning it into

groups, which in turn can be classified.

permitting them to be located and counted. The output can also be used in subsequent

processing for two purposes. The first is to analyse each object more carefully to see whether

the segmenter was correct in classifying it as such, the second is to classify the object more

carefully into a more specific sub-class. An example presented throughout this chapter is

pasta recognition – the feature detector cuts out the pasta shapes from the background; the

secondary processor identifies the type of each piece.

7.2 Classifying Objects

The secondary processor is, therefore, another classifier. Given a vector of features that des-

cribe a given object robustly, the same classification system can be used on each occasion.

Once again we first must turn our attention to the means by which a particular object may be

described.

7.2.1 Shape Descriptors

The first family of features comprises a series of descriptors that may be used to describe each

segment according to its shape or outline. Although an inherently 2D processing operation,

the “silhouettes” of segmented shapes in an image can yield useful information. Although

the author developed these descriptors independently1, they are similar to shape descriptors
1One of the perils of an incomplete literature review!

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 183

described in the computer vision literature. They include the following:

Roundness The roundness is calculated by inspecting the edge points of the shape and

seeing how closely it approximates a circle, whose edges will all be the same distance from

the centre.

Rectangularity A measure of how rectangular the object is, which is measured by compa-

ring its area to the total area of its bounding box. As a percentage measure, this function

is scale invariant. Since the bounding box is perpendicular to the axes, it is not rotation

invariant.

Symmetry The symmetry may be calculated by looking at how well the shape is mirrored

along a particular axis, in this case both the horizontal and vertical axes.

Roughness The roughness is calculated by looking at the variance in radius between dif-

ferent edges along the perimeter of the shape relative to the centre of gravity.

Density The outer and inner perimeters of the shape are measured, and the volume of any

“holes” in the shape are computed. If there are H holes, each with a size of hx, in a shape

whose mass is s, then the total hole size hT is
∑H

i=1 hi. The density is hT/(s + hT). The

density measure returns a percentage which is scale invariant.

Number of Corners Although it is rather difficult to measure the number of corners in an

image, corners are defined as those points where the differential of the tangental angle of an

edge is above a certain threshold. This is similar in concept to the Wang and Brady corner

detector.

Number of Edges Following a process of skeletonisation on the image, the number of ske-

leton edges can be counted. This is a useful descriptor of the structure of the shape and is

scale and rotation invariant.

Number of Joints Following the same process, the number of joints, or points at which

edges converge can also be counted. This is also scale and rotation invariant.

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 184

Max, Average Depth During the process of skeletonisation, the depth of each pixel from the

nearest edge is measured, permitting additional statistics to be calculated regarding the maxi-

mum and average depth of pixels in the shape. This can give a rotation invariant indication

of the overall thin-ness of the shape.

Balance The “balance” of the shape is measured as where its centre of gravity falls, compa-

red to its centre point. This can be used as another measure of the shape’s symmetry.

Size The size descriptor, or number of pixels in the shape, is the most straightforward mea-

sure. It is generally useful in discarding smaller segments arising from an inaccurate segmen-

ter or a noisy image.

The observant reader will note that some of these features are invariant to certain geome-

tric transformations2. Density, for instance, is both scale and rotation invariant. Others, such

as rectangularity which requires a threshold, is scale invariant but not rotation invariant.

Some problems do not necessarily require full invariance to all transformations – OCR for

instance is generally expected to work with the letters facing upside-up, as it were3. Other

tasks, such as pasta detection, are very much dependent on rotation invariant features. The

author’s feature selection techniques, described in Chapter 6, can be used in a similar manner

to discard those features that are not sufficiently robust for a particular problem. Since all

data is placed into a common dataset interface, exactly the same procedure can take place,

even though the task is quite different. Of course, a secondary process of feature selection

will occur during evolution, as those features that do not yield sufficiently fit individuals will

become less prevalent within the population.

7.2.2 Material Features

While shape statistics permit classifiers to distinguish basic objects based on their outline

shape, the shape statistics cannot be used for all distinctions, and indeed discard a substantial

amount of information regarding the appearance of the shape itself. Although the feature

detector will have selected the shapes on the basis of their sharing a similar material, that
2It is assumed that illumination invariance will have been accounted for by the feature detector.
3Humans too are trained this way – our own recognition of upside down text usually leaves something to be

desired! Of course, you can train yourself to read upside down.

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 185

material may be as simple as “not the background”. Therefore there may still be considerable

variation in the appearance of segments. It is useful, therefore, to provide features relating to

the colour and texture of the segments.

These features are quite similar to those used by the segmenter (covered in Chapter 6),

but are calculated as averages for the whole segment. The features include:

• Average Colour/Intensity Values

• Colour/Intensity Values Standard Deviation

• “Within Shape” Haar-like features

• Intensity Averages for the border of the shape

• Intensity Averages for the centre of the shape

The material and shape descriptor features may be used in conjunction – again the feature

selector and the GP system will decide their applicability to particular problems. Following

the process of feature selection, each shape is represented by a tuple of shape or material

descriptors, and is sent to the classifier.

7.3 A Framework for Evolving Vision Systems

It should be reasonably clear to the reader how these components may integrate readily into

a two stage architecture, generating vision systems that can cut out arbitrary parts from the

image, and then make higher-level decisions about them. The first phase is required for the

detection of objects in the scene, and the second aims to classify each object into a particular

class. A good example is the evolution of a segmenter that can identify pasta by colour and

texture, with a second classifier making the decision as to the type of pasta based on the

cut-out shapes. This example is shown diagrammatically in Figure 7.2. Such an architecture

is sufficiently abstract as to cover a variety of different problem domains, and is commonly

used in conventional computer vision.

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 186

Figure 7.2: The First Vision System Used for Experimental Work

7.3.1 Sub-Objects

Towards the end of this chapter we shall see some examples of vision systems created using

this framework, including a gesture recognition system and pasta recognition, which are cer-

tainly quite different domains. Both of which were created using the framework described

above. However, the initial framework implies certain restraints that limit its applicability.

Chief among these is the requirement that the object be cut out in its entirety by the segmen-

ter. In most situations this demands that the shape must be relatively homogenous. This is

sufficient for objects like pasta, which (should!) be composed of a single material. Howe-

ver, some objects do not suit this approach – such as the flags in the author’s Flag data set

(introduced on page 159). The segmenter can either cut out flags from the background in

their entirety, or segment individual colour regions of the flags. In the first case, the object

classifier would make the startling discovery that all flags are rectangles; even with average

colour information the overall shape descriptor features may not be concise or robust enough

to make accurate distinctions between them. In the latter situation it would be be unable to

understand how the different components related to each other.

The author’s solution is to divide the process of segmentation/feature detection into two

stages: a background subtraction phase, followed by a process of finer segmentation. In the

case of the flags dataset, the first detector would cut out the flags in their entirety from the

background to identify the objects. A second phase of feature detection could then proceed

within each flag, this time segmenting based on colour, attaching a number of “sub-objects” to

each object. Each object is thus described as a basic hierarchy – another technique employed

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 187

to make sense of scenes in conventional computer vision.

The sub-objects are processed into shapes in the same manner as the main object. Des-

criptors relating to the sub-objects can then be used to help with the classification of the main

object. Examples may include the number of “red shapes” within a given flag. Thus, as well

as being able to represent content as a basic hierarchy of objects and sub-objects, additional

information becomes available to help with the process of classifying the object. Furthermore,

by dividing the feature detection stage into two parts – background subtraction and segmen-

tation – the problem is made more straightforward; the segmentation stage in particular can

be evolved more easily, because it need only operate within the confines of specific objects

defined by the background segmenter. This is a process in some ways analogous to binary de-

composition, which was shown in Chapter 4 to learn solutions more rapidly than multi-class

classification performed during a single run.

The approach can actually be extended further, such that the sub-objects can themselves

be classified. In the case of the Flags dataset, the sub-objects can be classified as “stripes”,

“crosses” etc. The types of sub-objects can thus be of assistance when classifying the main

object – it can make use of features such as the number of “white cross” within the flag. Later

in this chapter, we shall also see an example where sub-object classification can yield useful

information directly. A diagram of this second vision framework, which comprises up to four

different evolved vision components, is shown in Figure 7.3.

7.3.2 Discussion

One could argue that any framework for designing systems will usually introdcue limitations

in flexibility, which could be at odds with any claims of genericity. Nonetheless, there are two

good reasons to make use of such a architecture. Genetic Programming is a powerful tool for

automated feature selection and learning. . . provided the task itself is not unduly ambitious.

While it is tempting to provide the GP toolkit with a generous set of components, sufficient for

Turing-complete programming, and to leave it to evolve a complete vision system in a single

run, the reality is that the learning process would probably not yield anything particularly

useful, at least in the limited time available for evolution. As we saw in Chapter 5, the

search space can grow to enormous proportions quite easily. Since time and processing are

always limited, a practical reaction is to divide the task into separate components. The author

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 188

Figure 7.3: The author’s updated vision system framework. It is composed of up to four

evolved components (shown here in green). Following a process of background subtraction,

which locates the objects in the scene, a secondary process of segmentation may be initiated

to detect sub-objects within each object, distinguished by different material. The sub-objects

may themselves be classified, and that information can either be outputted directly or ad-

ded to the object classification feature set. The objects themselves may also be classified to

produce useful high-level output.

believes that this partitioning into a pipeline of separately-evolved stages is critical as it allows

a range of domain-specific operators to be used in each stage without causing an explosion in

the dimensionality of the search space.

The second advantage of using a framework is that the user does not need to start from

scratch each time they attack a new problem. Given a fixed set of objectives or processes, it

becomes easier to automate the production of systems in general, and to ensure the useful

ideas and concepts discussed earlier in this thesis are made use of. Indeed, the author’s

software encapsulates the vision system architecture into a single user interface, permitting

the advanced user to generate vision systems within a couple of hours.

7.4 Jasmine

Having developed a reasonably generic vision system architecture, which is dependent upon

one or more evolved vision components, a significant challenge is the creation of a unified

interface by which the user can provide training data to the system and thus produce vision

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 189

systems with minimal effort. The author was inspired in this regard by work by Brumby et

al. [78] on a project called GENIE (“Genetic Imagery Exploration”), which included a basic

user interface named Aladdin for marking up images for binary segmentation. The author’s

own interface, named Jasmine4, which was initially similar in functionality to Aladdin, later

extended into a reasonably substantial platform for producing evolved vision systems. Besides

its support for object recognition as well as segmentation, Jasmine is distinguished from

Brumby’s interface by its support for arbitrary numbers of feature classes; the user may create

and use as many classes as they wish. It has already been mentioned in passing that classes

can be embellished with meta-data, for instance stating that it is a “background” class: that

information is used later by the vision system.

The software is project-based, meaning that the user can import a series of images, create

training data and evolve solutions, with all the information being saved together in one file.

This permits a problem to be shared easily, and for a user to resume their work quickly.

Training images may be added to the project either from pictures on disk or directly from a

compatible video camera.

In this section, the author will describe how a user may go about using Jasmine to produce

a vision application concerning the recognition of different shapes of pasta. The process

starts by choosing appropriate classes, in this case “pasta” and “background” and labelling

the training images appropriately.

7.4.1 Training Procedure

By this point the reader should no doubt be familiar with the concept underlying the author’s

feature detection procedure, which works by making a decision about each individual pixel.

The detector is evolved using a supervised learning paradigm in which programs are selected

according to their performance against a training dataset: a series of examples for which the

“correct” class has been established. Since most images are composed of tens if not hundreds

of thousands of pixels, generating meaningful training sets can be time intensive. One way

to create the training set is to create a binary mask to fit over a given image, which defines
4Jasmine was a character featured in the Disney adaptation of Aladdin, and has the advantage of starting with

‘J’, a crucial requirement for all applications written in Java. In line with the best traditions of computer science,

the name is a recursive acronym which the author fancies as standing for “Jasmine: A Segmented IMage Notation

Environment”.

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 190

which pixels in the image belong to a given class and which do not. This can be performed

using off-the-shelf graphics software such as Adobe Photoshop R©. However, in the author’s

experience, marking up every pixel in an image is not always a good idea, as some parts of

the image cannot be assigned to one class with absolute certainty. If the user does fully mark

an entire image, the training data may contain contradictions that are broadly invisible to the

human editor but nonetheless confuse the learning system.

The author started his experiments using this approach and can attest that such masks are

tiresome to create! Furthermore, they do not readily permit the marking of more than two

classes. For this reason the author commenced development of Jasmine, which permits the

user to mark up parts of a scene by roughly “painting” overlays, one per class, onto one or

more training images (see Figure 7.4). The whole image need not be marked up, the user can

select those pixels most representative of a particular material – the Genetic Programming

process will discover the boundaries itself. In Chapter 6 it was shown how samples from

multiple images could be taken without using excessive amounts of memory. All the feature

detectors demonstrated at the end of Chapter 6 were evolved using datasets produced in

Jasmine.

7.4.2 Training Data Selection

Painting classes directly onto images is a reasonably painless means by which to produce

training data, but each stroke of the mouse can add hundreds of new pixels to the training

set. It does not take long before the training set is filled with hundreds of thousands of pixels.

As was mentioned in Chapter 6, each pixel individually does not convey a huge amount of

information; indeed two adjacent pixels will often exhibit similar characteristics. Therefore,

there is good cause to reduce the training set size such that evolution can proceed more

briskly. Preliminary experiments by the author reveal that segmentation training data can

typically be pruned by about 80% with no significant loss in accuracy on test data.

Having decided to prune the training data in some way, we now turn to reasonable me-

thods for doing so. The author’s approach is to discard a certain proportion of training data

while maintaining the approximate class distributions, similar to the technique employed in

stratified k-fold cross validation. This first method shall hereafter be referred to as “by Class”

selection. Another sensible suggestion in this regard was made by Roberts and Claridge [149],

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 191

Figure 7.4: Creating training data via a graphical user interface in which the user simply

“paints” the different classes onto a training image. We shall use the detection of pasta as an

example throughout this chapter.

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 192

who proposed using k-means clustering to group the training data into ten classes, after which

an equal number of points are taken from each class. This, they said, would ensure that each

type of pixel would receive an equal representation in the training data, and would permit

the training data to be smaller. Their approach is referred to hereafter as “by Cluster” selec-

tion. However, no results were published to prove their claim one way or the other. Table

7.1 shows the results of an experiment conducted by this author in order to determine the

difference between the two techniques on imaging datasets. The training dataset was culled

to approximately 20% of its former size on three different vision datasets, using both tech-

niques. The results, averaged over 50 runs, are the error for the classifiers on test data, which

was left full-size. The result of an independent samples T-Test is also shown.

Data Set By Class By Cluster Result

Flags 0.048 0.057 By Class is better, p = 0.0369

Pipelines 0.039 0.042 By Class is better, p = 0.0008

Leaves 0.158 0.191 By Class is better, p = 0.0121

Table 7.1: Comparison between different training data selection techniques

The results show that the “by Class” method produced better results on each of the data-

sets, which in some ways is not surprising because the test set is more likely to be similarly

stratified to the culled training set, so the experiment is somewhat biased. However, if we are

interested purely in the results, it would appear that the clustering method does not, in fact,

offer any advantage.

7.4.3 Feature Selection

Once the user is satisfied with his/her artistic endeavours, the user may employ either of

the above techniques in order to select a fixed amount of samples; the relevant pixels are

extracted and formed into a set of training data for the feature detector. However, before

the process of evolution is started, it is worthwhile selecting the most useful features. The

feature selection techniques described in Chapter 6 are implemented within Jasmine, and can

be invoked to automatically cut the feature set down to a suitable size, shown in Figure 7.5.

Returning to our pasta example, the figure shows that the most useful feature was identi-

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 193

Figure 7.5: Feature selection is performed directly within Jasmine.

fied as the saturation level of a particular pixel, which appears to be a wise choice – the pasta

shapes are a reasonably saturated shade of yellow, but the background in this simple example

is textured but mainly grey. The second highest feature is a texture feature. The user may still

choose to disable the colour features – forcing the software to develop a system that works on

grey-scale images, or disable features that are computationally expensive in order to evolve a

more efficient detector.

7.4.4 Feature Detector Evolution

Following the feature selection, a final dataset is produced and fed to the author’s GP classi-

fication system (see Chapter 4). Jasmine can automatically chooses the appropriate classifier

representation by running short mini-evolution runs; it may choose either DRS2 or ICS. As

we saw, ICS tries many of the tricks a human would in finding a suitable classifier, including

performing binary decomposition, experimenting with different parameters and trying out

classifier ensemble techniques. In Chapter 4 a number of classification representations were

described; it was shown that classifier ensemble techniques can improve the accuracy of the

classifier, but they have the disadvantage of slowing down the process of classification (se-

veral decisions must be made per pixel instead of one). In the case of the feature detector,

which must make decisions for tens of thousands of pixels, this is not ideal but may depend

on circumstances – the user is given the option whether to use classifier ensembles or not,

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 194

Figure 7.6: As the GP evolves a solution, the best of run individual can be run immediately

on training data to visualise how well the program is performing

although by default the option is switched off for feature detection.

While the feature detector is being evolved, a live preview of its performance on the trai-

ning images is shown (see Figure 7.6). This can give a good indication of how the detector

performs on entire images, especially when the training data is taken from just a few re-

presentative samples on each. Sometimes it becomes clear that certain characteristics in the

image are under-represented. Based on visual observation, the user may choose to update the

training overlays; often discrepancies become clear quite soon into the evolutionary process.

Thus the user can iteratively improve and fine-tune the training data to produce the desired

result.

Once the classifier has gobbled up the data and completed its business, the evolved feature

detector is saved and automatically compiled to Java byte-code. This means the code can be

executed without the need for interpretation of the GP tree, and runs at the same speed as

hand-written code.

We have seen so far the process necessary for feature detection (in this case background-

subtraction) on the simple pasta dataset. The process of segmentation (which yields the sub-

objects) can proceed in a similar manner. However, the pasta experiment does not demand

the extra step, so we can skip forward to the object classification stage.

7.4.5 Object Classification in Jasmine

Once the feature detector has been evolved satisfactorily, the user may deploy it on the trai-

ning images such that individual pieces of pasta are cut out as objects. The user may then

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 195

define another set of classes that define the higher-level characteristics of the objects. In this

case this may be the type of pasta5. As will be shown shortly, the number of classes required

in some circumstances can be quite large – over 30 in some cases. The author does not recall

having seen classification by GP beyond 16 classes, which itself is unusual: usually the num-

ber is around 4–5. In Jasmine each object can simply be clicked on to assign it a particular

class.

When the user’s mouse finger is tired, the shapes may be used to assemble another set

of training data, this time using the features described in Section 7.2.1. These features are

passed through a second process of feature selection, this time with respect to the object

classes, and the classification system is invoked once more. Due to the relatively small number

of shapes within the image relative to the number of pixels, the system can be indulged in

using classifier ensembles, which generally improve accuracy.

Again, if pasta were more complex, we may have run a classifier for sub-objects first. In

the case of the vision system, the sub-object classifier must be run before the object classifier,

such as to provide the object dataset with more information. Such practicalities are taken care

of by the author’s software – the end user need only concentrate on evolving the components,

which can then be added to a visual representation of the vision system in Jasmine.

After the evolution of each stage, the evolved component can be evaluated against a series

of test set images, not used in training, to assess how well the evolved solution copes with

unseen data. The software can calculate accuracy metrics for each component in the vision

system.

7.4.6 Vision System Object

A separate vision-system program stores all the evolved components and performs the neces-

sary in-between processing. Following the evolution of all necessary components, this vision

system program may be exported into outside applications of the user’s choice. The vision

system raises events at appropriate times during processing, permitting other software to

interact with it. In the next section we shall see how the vision system performs.
5‘penne’, ‘conchigle’, ‘fusilli’, ‘farfalle’, etc

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 196

7.5 Results

This final results section presents examples of the vision systems that can be generated using

the author’s framework. We shall start with those systems using the author’s initial two-stage

architecture, then move onto problems that demand the extra steps of the author’s second,

more complex architecture. Numeric results will be shown wherever possible; the quality and

applicability of the solution will be assessed in each case.

7.5.1 Pasta Shape Recognition

Approaching the end of this thesis, the reader may be rather tired of pasta, or indeed vaguely

hungry. Nonetheless, having discussed it during this chapter, it seems fair to present the

results of the vision system. The feature detector, which cuts out pasta shapes, was evolved

using the author’s DRS2 technique in approximately 90 seconds on a modest 3Ghz single

core machine. It achieved a high accuracy of 99.9% on training data. It was then put to work

on a series of previously unseen images for the purposes of detecting objects, in this case

individual pieces of pasta, of five different types. The detector yielded a sensitivity of 100%

and a specificity of 97.4% with respect to detecting the pasta shapes on test images. These

are high results; we shall shortly see whether they yield in accurate classifiers – a better test

of their utility.

Each object was labelled into one of 5 different classes corresponding to different pasta

types; producing an object training set of approximately 500 samples and a test set of 1250

samples6. This is a straightforward process of clicking on each shape in each image to assign

it an appropriate class. A shape classifier was then evolved using ICS in approximately 2 mi-

nutes and was able to achieve 96.8% accuracy on the object dataset. Thus the total accuracy

of the system on test data is 96.8%, which corresponds to the likelihood that any piece of

pasta in the images can be detected, located and correctly identified. Any example of the

system working this is shown in Figure 7.7 below. The system was developed in a morning,

which included generating the training data.

6The author’s mouse finger was quite tired at the end; fortunately each training images only contains instances

of one type of pasta – Jasmine includes an option to classify every object in an image into a particular class which

reduces the number of mouse miles to be travelled!

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 197

Figure 7.7: The Pasta Recognition Vision System, working on an unseen image.

7.5.2 Hand Gesture Recognition

The second experiment concerns the recognition of hand gestures. Although this kind of

problem has been tackled effectively by researchers using other learning techniques, notably

by Starner [150], it has not previously been investigated using Genetic Programming7. The

author devised a set of ten different hand gestures, some of which are shown in Figure 7.8.

A training set of images was developed using images captured using a webcam, which

can be loaded directly into Jasmine. Two classes were created: “skin” and “non-skin”, and a

series of training samples were marked up in the usual fashion.

A background subtracter was evolved to distinguish the two, and achieved an accuracy

of 96.4% on a reduced training set comprising approximately 15,000 pixels, and accordingly

could be evolved rapidly. The feature selection process was run as normal, but some of the

computationally expensive features were disabled manually to ensure the detector could run

quickly. The detector was able to cut out hands from test images with a sensitivity of 99.6%

and specificity of 94.3%.
7Although it has been used for hand detection in shape silhouettes by [100], see page 61.

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 198

Figure 7.8: Hand Gesture Types

Figure 7.9: The posture vision system working on a webcam in real time.

The ten different classes were then added to the project, and each hand “object” was then

labelled with the appropriate class. An object dataset was produced consisting of some 600

hand images, with 200 used for training. Unsurprisingly, the feature selector revealed that

shape descriptors were the best available means of classifying these objects.

ICS was put to work learn to classify the gestures and achieved an accuracy of 96.2%, yiel-

ding a final accuracy per gesture of 95.8%. The vision system was developed in approximately

2 hours. Since the primary application of gesture recognition is human-computer interaction,

it is essential that the vision system work in real-time. The system was able to recognise hand

gestures at a rate of 6 frames per second, shown in Figure 7.9.

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 199

7.5.3 Lesion Classification

In the last chapter, the author’s generic feature detector was applied to the task of skin lesion

segmentation (see page 174). Without a ground truth from an expert, it is difficult to assess

how accurate the author’s segmenter was, although from a layman’s point-of-view, the system

seemed to identify the lesion boundaries accurately, was not affected by hairs or other skin

features, and could work on a variety of different skin colours. It has already been stated seve-

ral times that the performance of a vision technique can be assessed by its utility – is its output

meaningful enough for higher-level decisions to be taken? Fortunately it is somewhat easier

to find images from medical databases which state the type of lesion – either a benign nevus

(mole), or malignant melanoma (a particularly unpleasant form of skin cancer). Although it

is sometimes difficult to tell the two apart (malignant melanomas will often grow out from

moles), medics have devised an “A-B-C-D” test to distinguish malignant melanomas, which

are typically A-symmetric, have irregular B-orders, uneven C-olor, and have a D-iameter over

6mm. Although the last criterion is difficult to measure from images when there is no idea of

scale, the author’s toolkit should be quite well placed to assess the first three and classify the

regions previously extracted using the lesion feature detector.

A set of 68 images were acquired by the author, which had been identified by dermatolo-

gists8. The images were loaded into Jasmine and processed in the same manner as previously

described. A segmenter was evolved to cut out the lesions, with an object classifier later em-

ployed in order to classify them as being malignant or not. Since it was difficult to acquire a

large number of appropriate images, 10-fold cross validation was used to assess the result of

the classifier, which achieved an average accuracy of 85.8% on test data following 50 runs.

This result shows that the author’s system can extend the functionality of vision compo-

nents evolved by other GP researchers, and also goes some way to demonstrating that the

output of the segmenter is meaningful.

Despite attempts to acquire the original datasets used by other researchers, it was not

possible to access sets for which other researchers have published results. In order to develop

some means of comparison, or an assessment of the difficulty of the images themselves, the

author developed a web-based training system by which humans could learn to discriminate

between different lesions by following examples after an introduction to the “A-B-C-D” rule.
8The images came from the Dermnet Skin Disease Image Atlas, www.dermnet.com.

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 200

They then had their new ability tested. The system used the same procedure as the GP system,

with 90% of the images used for training and 10% reserved for testing. The results from 50

respondents were interesting: the average error on test images was 81.3%, indicating that

the author’s GP system is competitive with amateur humans.

7.5.4 The MNIST Dataset

Optical Character Recognition (OCR), has been mentioned at several points during this thesis,

as it is a good example for a variety of different processes, including thresholding, template

matching or shape analysis. Indeed, the author’s software has already been put to work on

the detection process for musical notes. The cogitant reader have considered whether the

author’s system is suitable for other character recognition tasks. A background subtractor

can be evolved to cut out shapes, and some of the shape descriptors may do a good job of

characteristing letters.

To compare its performance relative to other techniques for this task, the author’s system

was applied to the MNIST dataset [151], a large set of hand-written digits (0–9), collected

from hundreds of writers. The dataset consists of 60,000 training samples and 10,000 test

samples (see Figure 7.10 for a few examples). Although the recognition of printed Latin

characters is regarded by some as a solved problem, the recognition of hand-written characters

remains a more difficult task, due to the high variation in written forms.

Unfortunately Jasmine could not be used for this purpose, because the author did not

feel up to hand-labelling all the digits manually! The author wrote a programmatic interface

to produce the training set. A background detector was evolved by GP, which was trivial in

nature. A process of feature selection took place in order to select the most useful features.

The system was then left to its own devices to develop classifiers.

The system took, on average, 50 minutes to produce a multi-class classifier using ICS.

The average accuracy following 10 runs was 92.7% on training data, and 90.6% on test

data. The results, compared to other approaches, are shown in Table 7.2. Although some

techniques in this case, notably the Support Vector Machine, achieved significantly better

results than the author’s system, the result by ICS is nonetheless reasonably competitive with

other approaches, and quite reasonable for a generic system! The addition of further features

may help improve the result further.

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 201

Figure 7.10: Random examples selected from the MNIST database.

Dataset Result

ICS 90.6 ±1.3

Neural Network 88.0

K-NN 95.0

SVM 98.4

Table 7.2: Results on the MNIST database test data.

We saw in Chapter 3 Teredesai used Genetic Programming to recognise characters on the

NIST dataset (of which MNIST is a subset). Teredesai used a set of image features specifically

designed for the purposes of OCR. Teredesai reported results of binary classifiers per class

of between 95.9% and 97.6% each. Assuming the best case, and equal class distributions,

this yields an overall accuracy of 0.9769 or 80.3%. This is the closest comparison available

from other Genetic Programmers; again it indicates that the author’s generic approach is

competitive with the more specific attempts by other GP researchers.

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 202

7.5.5 Flag Recognition

Moving onto the author’s more complex vision system architecture, we encounter once more

the author’s Flag dataset, which comprises a number of flag images captured using a webcam.

The dataset consists of images of flags from 16 EU member states. Since flags are primarily

defined by their colour, the dataset is a test of the vision system’s ability to recognise colours

accurately. The first stage is to detect the flag images from the background (the author’s desk),

which is relatively straightforward given its reasonably plain nature. Accordingly the flags

could be extracted on all occasions from the test set following the evolution of an appropriate

background detector by GP. The second stage is then to identify the colour of objects within

each flag – 7 classes were identified: Red, Yellow, Green, Dark Blue, Light Blue, White, Black;

these were inputted into Jasmine and a further set of training data pixels was produced.

Following the evolution of the colour segmenter, on the test set the colour segmenter achieved

an accuracy of 91.5%. This accuracy was boosted to 97.1% by the author’s classifier ensemble

technique.

The segmenter permitted the system to identify the sub-objects within each flags; the

individual coloured shapes that make up the flags’ designs. Four further sub-object classes

(‘long stripe’, ‘short stripe’, ‘cross’ and ‘other’) were added to the project, and instances of

each were labelled to generate a sub-object dataset. A sub-object classifier was then learned

by ICS, which achieved an accuracy of 98.2%.

Given this information, including the other colour and shape information, the flags them-

selves were finally classified, again using ICS, which achieved an accuracy of 95.9%. The

accuracy per flag therefore was 95.9%. The vision system was developed in approximately 2

hours.

7.5.6 Automatic Number Plate Recognition (ANPR)

We shall complete the results in this section with a final problem taken from images in a

much less constrained environment, which again makes use of the author’s more complex

architecture. The problem concerns the detection, location and reading of car number plates.

Over the last decade or so, ANPR systems have become quite ubiquitous, and are used exten-

sively by the police, in traffic cameras, and in petrol station forecourts. Although many ANPR

machine vision systems use infra-red filters to identify number-plates optically, the author

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 203

Figure 7.11: The Flag Vision System in Action. The Flags are cut out from the background

and then segmented in order to yield sub-objects within each. This information is then used

to decide the class of each flag, displayed on the right side.

developed a similar system using pure vision software. The system was trained on a series of

images taken from cars in a local car park, and tested on images of cars in motion, travelling

past the author at 50–60mph.

The first stage is to detect the number plates using a background subtractor. As before,

examples of numberplates and non-numberplates were marked up on Jasmine, with a suitable

discriminator learned by GP. The evolved solution achieved an accuracy of 99.0%, following

just 40 seconds of evolution. Since UK rear number-plates are a relatively specific shade of

yellow, the background-subtractor was reasonably straightforward to construct. However,

there are often other similarly coloured objects within a scene. The background subtractor

was executed on each image. Two object classes were created to distinguish true number-

plates from other yellow regions, and another object dataset was created. A classifier was

developed in order to identify the true number plates, this time based on their shape; it was

essentially a rectangle-finder. Although the author’s system seeks to classify sub-objects be-

fore objects (to aid the object recognition process), if the object is found not to be rectangular,

then any identified digits are ignored.

The third stage of evolution was to develop a segmenter that can accurately distinguish

characters on the number plate as sub-objects. A separate set of training data for this purpose

was painted in Jasmine and another segmenter evolved. The segmenter was then deployed

into the ANPR vision system. The sensitivity of the system, or the probability of any letter

being correctly detected, was 99.4%. Fortunately the detector doesn’t have to detect every

pixel in the letter, but sufficient ones to identify its shape.

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 204

Figure 7.12: An Evolved Vision System Recognising and Reading Car Licence Plates. The

background segmenter (top right) identifies the areas of number plate. The segmenter (bot-

tom left) then cuts out the letters, which are individually classified and labelled in order to

read the plate (bottom right).

Each character was then labelled appropriately, yielding a dataset whose members repre-

sented 34 different alphanumeric classes (all numbers and all letters apart from Q and I).

This is a significantly larger number of classes than has previously been tackled by GP vision

researchers, or indeed in GP OCR tasks. The final process, of sub-object classification, was

then initiated. Each letter in each training numberplate was labelled with the appropriate

sub-object class, and a classifier was evolved using ICS. Each letter was classified with an

accuracy of 98.4%. This means that the probability of correctly segmenting and classifying a

given letter by the system is 98.8%. If a number plate is generally composed of 7 letters, then

the probability of getting the whole plate right is 91.7%. The vision system was constructed

in the course of a day, which included taking pictures of the vehicles. Figure 7.12 shows the

process in action.

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 205

7.6 Applicability

In this chapter the author has presented a framework based on learning by GP for producing

vision systems. Throughout, the features and learning systems have been assessed according

to their genericity, or applicability to a wide range of problems. Indeed the examples just

presented are representative of a reasonably diverse set of tasks – more diverse, at least, than

has been reported by GP researchers to date. Still, there are a number of limitations to the

applicability in this approach, which merit a brief discussion of their own.

One limitation is manifested in results on COIL-100 dataset [152]. The dataset consists

of images of 100 different objects. Each object is rotated 360◦ about an axis roughly per-

pendicular to the camera view in 5◦ increments. The author’s system, however, uses features

that are not invariant to this type of rotation. An experiment was run to assess whether the

author’s software could develop a vision system could distinguish among all the objects, and

to analyse the extent to which the software is invariant to this kind of rotation. The author’s

system was put to work on the dataset in much the same way as before, first segmenting the

objects from the background, then performing a finer process of colour segmentation, then

evolving an object classifier.

The results of the evolved solution for different amounts of rotation are shown in Figure

7.13. For small changes in angle, the author’s system is reasonably accurate (achieving an

accuracy of 92.7% for rotations within ± 10◦), certainly given the number of classes, which

is far beyond the number usually tackled by GP researchers investigating multi-class classifi-

cation. Nonetheless, it is clear that the author’s vision systems are inherently limited to two

dimensional problems – the figure shows that the performance of the system degrades mar-

kedly as the extent of rotation is increased. A new set of features is necessary to render the

author’s software more capable of a wider range of tasks in three dimensions. Of course any

function that returns 3D invariant information could be plugged into the author’s framework.

In the author’s opinion, the other key limitation of the existing framework is its inability to

cope with occluded or overlapping objects, which would otherwise be treated as a single large

object that would probably be mis-classified. Although the feature detector can be trained to

divide objects using a number of metrics, including edges, it is difficult to insist that it does

so. One solution is to implement an idea (proposed by Campbell [77], see page 52) in which

the image is first pre-segmented using a watershed or other unsupervised learning technique.

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 206

Figure 7.13: Results on the COIL-100 Dataset, (attained using cross validation). Results are

shown for a number of angle ranges. As the range of angles increases, so the performance of

the classifier decreases.

Given suitable parameters, such approaches tend to over-segment but this process also tends

to preserve edges. Segments could then be combined together using Genetic Programming to

assess their similarity, taking account of edges between. A further discussion of applicability

and extensions to this work awaits the reader in Chapter 8.

The addition of extra features may also help improve the accuracy of the vision systems

developed by the author’s framework. Although it was shown that a given letter in the ANPR

task could be classified at a rate of 98.8%, this would lead to a probability of recognising only

91.7% of entire plates entirely correctly, which police or security organisations might prefer

to be a little higher before placing orders for the first GP-evolved ANPR system! The author’s

system works on images in quite a “raw” way – additional pre-processing operations such

as normalisation or shape de-skewing may yield more robust results that bring the author’s

software into the range of genuine commercial applicability.

CHAPTER 7. A FRAMEWORK FOR EVOLVING SOLUTIONS TO VISION PROBLEMS 207

7.7 Conclusion

This brings us to the end of the experimental work in this thesis. In this chapter we have

covered extensions to the author’s feature detection software which permits more complete

vision systems to be constructed using GP. Some are able to run in real time. In this thesis the

author has explored the means by which a reasonably large range of problems can be tackled

by a generic GP approach. In the next, final chapter, the applicability and limitations of the

author’s approach will be discussed in more detail.

Chapter 8

Conclusions

Perhaps one of the reasons we enjoy so-called “optical illusions” is not because they shed

some light on what might be going on inside our brains but because they demonstrate that

our vision system can, just occasionally, fall short. Our vision system is usually so relentlessly

flawless that its failure is something of a novelty! In emulating vision, by contrast, we encoun-

ter a seemingly endless number of difficulties, limitations and hidden complexities. In this

thesis, the author has tackled a few of the classic problems in machine vision, and attempted

to develop practical solutions in an automated fashion. In this final chapter, the author shall

make a critical assessment of the applicability and value of the author’s work. We shall start

by revisiting some of the concepts that motivated the research in this thesis.

The Automated Production of Vision Systems So exceptional are our eyes and brains that

certain tasks in vision feel so trivial as to be tedious. Accordingly, there are a great many tasks

that we would like machines to attend to on our behalf. Indeed, if one were to sit down and

enumerate all the things that we can do with our eyes, but which we’d prefer a computer to

do for us, the list would rapidly become gargantuan. It appears that machine vision is one of

those topics for which the number of expedient solutions is outnumbered by the volume of

desirable applications.

To develop a “complete” vision system on a par with our own is currently not achievable,

so we must restrict our ambitions to solving one specific problem at a time. Indeed, although

some commercial vision systems claim to be applicable for “all situations”, they are in fact

usually limited to a subset of tasks, usually involving industrial inspection [153, 154]. Faced

208

CHAPTER 8. CONCLUSIONS 209

with the huge amount of human expertise required to create any non-trivial vision system,

comes a desire to automate production in some way, which was the primary motivation un-

derlying the work in this thesis.

Extending GP Vision Research The author’s work uses Genetic Programming (GP) as its

principal learning component. Although Genetic Programming has been applied to vision

problems throughout the history of its own evolution, a gap in GP machine vision research

provided a second motivation for the author’s study: work is usually concentrated on a single

component of an overall vision system, for instance pre-processing operations, low-level com-

ponents or object recognition. As such, those evolved components do not represent working

vision systems; and until now, it has not been shown how a more complete, working vision

system may be constructed using GP-evolved components.

The Spirit of Automatic Programming A third aim was motivated by another feature of

some GP research, which is generally to devise a highly task-specific set of features and para-

meters, and then show how they may be put together using Genetic Programming [25, 155,

97, 156, 157]. In the author’s opinion, this is somewhat contrary to the intention of machine

learning, which is to have computers develop software themselves. If the learning system

requires customisation for each different problem then it isn’t learning enough!

8.1 Assessment

Over the last three years, the author has developed a software framework in which the ma-

chine itself is almost entirely responsible for the technical aspects arising from the production

of various vision systems. The human user may define the problem with the tools provided,

but expertise in machine vision itself is generally not required. In an ideal world it would be

left for a domain expert, such as a radiologist, geologist or zoologist, to define the “truth” in

each case, leaving the task of identifying patterns to the software. In this section, the author

shall critically assess his system in terms of its applicability, quality and competitiveness with

other techniques, and determine how well the system meets the original motivations for this

work.

CHAPTER 8. CONCLUSIONS 210

In Chapter 2, we saw how many components and parameters may make up a Genetic

Programming system, and in Chapter 5 the author suggested how to avoid some of them! The

author has tried to show how Genetic Programming can be rendered reasonably parameter-

free for a variety of problems, and in certain respects this has been successful: all the results in

Chapters 6 and 7, for what they are worth, were obtained from a system that did not require

any tuning. In the author’s system, feature selection and extraction, training data creation,

segmentation and shape classification are all performed automatically.

To what extent is the author’s toolkit parameter-free? Is the quality of solutions com-

promised when the system cannot be tuned to each problem? Indeed, in many cases, such

as those discussed in Chapter 5 there isn’t a straightforward “best” parameter for a parti-

cular solution. For this reason the author developed a classification system which attempts

to make intelligent decisions and try out ideas, instead of delegating those decisions to the

human operator. Although the binary decomposition process within the system makes this

faster, trying our different ideas increases the learning time, although this too can be offset

by using multiple CPUs. The author fancies that this is similar to the process that a human

researcher might undertake while developing a system. It may well be possible to discover

parameters that suit a particular problem better, but the time taken in doing so may outweigh

the advantages!

8.1.1 Multi-Stage Vision Systems

The author claims to have gone further than other GP researchers by developing vision sys-

tems that comprise two or more separate stages of processing, each using evolved compo-

nents. Multi-stage evolution is not a new topic in GP, but is almost exclusively confined to

refinements of the same task [18, 149, 158]. In this thesis, the author has shown that Genetic

Programming can evolve solutions to a number of image processing operations, and that each

stage is sufficiently accurate as to provide meaningful data to the next stage. This would ap-

pear to accommodate the requirement of extending GP research, but the question is whether

the author’s systems are competitive.

CHAPTER 8. CONCLUSIONS 211

8.1.2 Competitiveness

It may be that the machines have more to offer than cheap labour. Given sufficiently well-

defined criteria, computers are able to try out possibilities more quickly than can a human, so

systems whose development requires some degree of trial-and-error may benefit from more

comprehensive exploration if studied by computer. In general, machines are not biased to-

wards a particular approach, so it could be submitted that their exploration of the search

space is be more fair. Of course, it could be argued that they also lack the intuition necessary

to concentrate their search in promising areas! Still, it may one day be the case that the

state-of-the-art requires more work than can be accomplished by humans alone.

But to what extent does the author’s work represent the state-of-the-art in computer vision

today? The author would readily acknowledge that the vision systems produced using his

system are not as advanced as some of the approaches taken by vision researchers in recent

years. It is the nature of generic systems to follow behind the bleeding edge to some degree.

Still, the author would submit that his system has value: it can be used to generate working

vision systems in a fraction of the time that would be taken if being developed manually.

Other considerations, so elegantly managed by our own eyes and brain, such as geome-

tric or illumination invariance, provide substantial stumbling blocks for vision systems and

demand significant research in their own right. In some senses, therefore, the author’s remit

in this work is too broad, especially since it covers both a substantial swathe of computer

vision and evolutionary computation; the reader will have noticed a relatively equal split bet-

ween the two during the reading of this thesis. Although issues such as colour constancy,

noise reduction and others have been touched upon, the author does not claim to be expert

in these fields. Algorithms have been introduced and integrated into to the author’s system,

but these may be regarded as “placeholders” rather than advanced systems with which the

author would claim satisfaction. Accordingly, the author’s framework is designed such that

other vision algorithms and learning techniques could be plugged in at a later date to im-

prove its robustness. Still, one of the major benefits of using Genetic Programming is that the

imperfections of other algorithms are inherently accounted for!

In some ways, to concentrate on vision systems in general rather than vision components,

then to divide one’s loyalties between machine vision and the field of evolutionary compu-

tation makes it difficult to examine everything to the detail desired. Perhaps it is better to

CHAPTER 8. CONCLUSIONS 212

concentrate more intently on a smaller area, although the challenge of taking on more is so-

metimes difficult to resist. The author would have preferred to spend more time investigating

individual components in machine vision and evolutionary computation, but there is simply

too much to cover during the course of three short years!

In Chapter 5 we saw that the author’s system was broadly competitive with other ma-

chine learning techniques on classification tasks, more so against classifiers published by GP

researchers. In vision too, the author’s system goes beyond what other GP researchers have

published. Indeed, the author’s generic system has been used to replicate and extend work

recently published by other GP researchers. Still, it is acknowledged that Genetic Program-

ming does not represent the current mainstream approach towards machine vision; indeed,

some of the problems attacked by genetic programmers are simplistic. The “edge” offered

by Genetic Programming is its ability to solve problems in an automated way; as already

discussed, it appears the author’s system does offer such an advantage in terms of the speed

and ease with which vision systems can be produced. This benefit is most meaningful if the

system can solve a host of different tasks.

8.1.3 Applicability

As we saw in Chapter 6 and 7, the author’s system has been applied to problems encompas-

sing a wide variety of domains; the system was not developed with any particular application

in mind. But to what extent can the author claim that his system is widely applicable? Des-

pite claims toward genericity, and a system that doesn’t require explicit tuning to particular

problems, the reality is that the author’s software can solve but a small fraction of the gamut

of machine vision systems that exist. The field of computer vision is such that it is not easy

(or perhaps possible) to find a set of metrics that can adequately describe all the possible

information we might like to draw from an image. Nor is it straightforward to bolt them all

together into a single architecture or interface. The further that one proceeds with compu-

ter vision, the more different applications come to mind; some can be accommodated, many

cannot. There are a number of areas where the author, given time, would choose to expand

his vision system with a view to increasing its applicability. Some of these are described later

in Section 8.2.

CHAPTER 8. CONCLUSIONS 213

8.1.4 Genetic Programming

Throughout the thesis, the reader may have questioned whether Genetic Programming is the

most appropriate tool for developing all domain-specific components of the system. As was

discussed toward the end of Chapter 5, machine learning paradigms each exhibit their own

strengths and weaknesses. Perhaps it is rather inflexible to use Genetic Programming exclu-

sively, when other techniques may be more appropriate in certain situations or for certain

tasks in general? Neural networks are widely used in machine vision for various tasks, and

Genetic Algorithms are also used for feature selection and other optimisations. The author

acknowledges this is a reasonable suggestion, which may benefit future versions of his soft-

ware. Like much doctoral research, this work has concentrated on the development and use

of a specific system, with the inevitable consequence that some more practical considerations

are compromised.

That said, Genetic Programming remains an extremely flexible and promising machine

learning technique. There are few learning algorithms that are sufficiently generic to allow

such a wide range of learning applications. As we saw in Chapter 5, the search space for

all but the simplest tasks can grow to astronomical proportions and yet the evolutionary

process can pick out competitive solutions within a matter of minutes or hours, which is quite

remarkable. The fortunate thing is that while the search space grows, so does the solution

space.

8.2 Future Directions

Over the past three-and-a-half years, the author has somehow managed to write slightly over

100,000 lines of code. Still, even while putting the finishing touches to this final chapter,

there are still many new possibilities and areas of endeavour that come to mind! In addition

to those already hinted at so far in this chapter and previous ones, there are a number of

directions for extending this work that can be recommended.

The most straightforward extension is to introduce additional imaging features and shape

descriptors in order to enhance the system’s ability to generalise. With a feature selection

system and the inherent ability of GP to select useful terminals, additional descriptors could be

added quite liberally. Such is the breadth of ideas conceived by computer vision researchers,

CHAPTER 8. CONCLUSIONS 214

that one could no doubt find many new ideas to take advantage of!

As we saw in Chapter 6, there are certain features which work “out of the box”, as it were;

but other feature families, such as Haar-like features, need to have parameters chosen for

them in order to be useful. Indeed, certain features may be combined together to produce

more useful ones, a common application of principal components analysis. Genetic Program-

ming has also been used for this purpose [159]. Feature extraction, by which parameters for

Haar-like features and others may be discovered, was touched upon in this thesis, and indeed

appears to work satisfactorily, but like many other things, the author’s system may benefit

from a more comprehensive study.

The author’s vision framework is designed to recognise two-dimensional objects, or at

least objects which are captured from a consistent camera direction, although they can be

rotated around an axis parallel to the camera’s point-of-view. For many applications, this

is sufficient, but as vision systems grow more complex, it becomes more practical to define

an object by points and edges in 3D space. An intermediate layer, which takes the shapes

identified by the feature detector and identifies corners and edges in 3D (perhaps using stereo

image pairs), for use by the shape classifier, may help create an object recogniser that is more

robust and more applicable.

As has already been suggested, the author’s system may be rendered more robust by more

advanced colour constancy and exposure manipulation algorithms. The author’s software

would serve as a useful test bed for evaluating the reliability of such algorithms on a variety

of different imaging problems. Although the author’s system uses Genetic Programming ex-

clusively, the nature of the system’s dataset/classifier interface makes it straightforward to

introduce different learning techniques to the fold.

Aside from purely vision related matters, there are a number of additions that could be

made to the evolutionary system itself. The author has always considered co-evolution to be

a fine idea – where features can be evolved alongside the algorithm itself. Binary decomposi-

tion, implemented by the author’s classifier, helps guarantee that sub-solutions, once learned,

can be protected, but this is dependent upon the user defining multiple classes, and does not

assist in binary situations. Although the author has implemented a co-evolution system in

SXGP there hasn’t been enough time, alas, to investigate it thoroughly.

CHAPTER 8. CONCLUSIONS 215

8.2.1 Resources

For readers interested in implementing some of the ideas, the entirety of author’s software

is available online. You may either run the software directly from the web and generate

vision systems of your own (a tutorial is provided) or download the source code and start on

Version 2. The URI is:

http://vase.essex.ac.uk/software/jasmine

8.3 Closing Remarks

It is clear that there are many different avenues that interested parties could explore. There

is plenty more work to do on the author’s system before the word “towards” on the title of

this thesis could be safely removed. Therefore, the most suitable conclusion to this thesis is,

perhaps, that there is no satisfactory conclusion so far. The field of computer vision remains

open and, as yet, there is no truly generic means of approaching vision in general, short of

building a complete emulation of the human brain and visual system. The author suspects

this will be the ultimate realisation of machine vision. In the meantime, there is a need for

more straightforward vision systems, perhaps of the type that author’s software is able to

create, until such a time as a colossus can be constructed – which may take some time yet.

Don’t despair though reader, in case you’re recalling that your own vision system’s evolution

commenced some 540 million years before you started reading this thesis – the rate of human

science and discovery is such that the colossus may be here sooner than any of us can imagine.

– THE END –

Bibliography

[1] N. Eldredge and S. J. Gould. Models in Paleobiology: Punctuated Equilibria: An Al-

ternative to Phyletic Gradualism, chapter 5, pages 82–115. Freeman, Cooper and Co,

1972.

[2] A. Parker. In the Blink of an Eye. Perseus Publishing, 2003.

[3] Paul Viola and Michael Jones. Robust real-time object detection. International Journal

of Computer Vision, 57(2):137–154, 2004.

[4] John R. Koza. Genetic Programming: On the Programming of Computers by means of

Natural Selection. MIT Press, 1992.

[5] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley, 1989.

[6] Sean Luke. ECJ: A Java-based evolutionary computation research system v14. http:

//cs.gmu.edu/~eclab/projects/ecj/.

[7] Olly Oechsle and Adrian F. Clark. Feature extraction and classification by genetic

programming. In International Conference on Vision Systems (ICVS), 2008.

[8] Huey et al. Rapid evolution of a geographic cline in size in an introduced fly. Science,

287(5451):308–309, 2000.

[9] Ingo Rechenberg. Evolutionsstrategie - Optimierung technischer Systeme nach Prinzipien

der biologischen Evolution. PhD thesis, Technical University of Berlin, 1971.

[10] John H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, 1975.

216

http://cs.gmu.edu/~eclab/projects/ecj/
http://cs.gmu.edu/~eclab/projects/ecj/

BIBLIOGRAPHY 217

[11] Stewart W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation,

3(2):149–175, 1995.

[12] J. P. Nordin. A Compiling Genetic Programming System that Directly Manipulates the

Machine Code, pages 311–331. MIT Press, Cambridge, MA, USA, 1994.

[13] Astro Teller and Manuela Veloso. PADO: A new learning architecture for object recog-

nition. In Symbolic Visual Learning, pages 81–116. Oxford University Press, 1996.

[14] Ogino Shirakawa and Nagao. Graph structured program evolution. In GECCO ’07:

Proceedings of the 9th annual conference on Genetic and evolutionary computation, pages

1686–1693, 2007.

[15] David J. Montana. Strongly Typed Genetic Programming, volume 3, pages 199–230.

MIT Press, 1995.

[16] Hitoshi Iba. Random tree generation for genetic programming. In Parallel Problem Sol-

ving from Nature IV, Proceedings of the International Conference on Evolutionary Com-

putation, LNCS, volume 1141, pages 144–153. Springer Verlag, 1996.

[17] Sean Luke. Two fast tree-creation algorithms for genetic programming. IEEE Transac-

tions on Evolutionary Computation, 4(3):274–283, 2000.

[18] Simon C. Roberts and Daniel Howard. Evolution of vehicle detectors for infrared lines-

can imagery. In Evolutionary Image Analysis, Signal Processing and Telecommunications,

volume 1596 of LNCS, pages 110–125. Springer-Verlag, 1999.

[19] Ankur Teredesai and Venu Govindaraju. Issues in evolving GP based classifiers for

a pattern recognition task. In Proceedings of the 2004 IEEE Congress on Evolutionary

Computation, pages 509–515. IEEE Press, 2004.

[20] Riccardo Poli and Nicholas McPhee. Parsimony pressure made easy. In GECCO ’08:

Proceedings of the 10th annual conference on Genetic and evolutionary computation,

pages 1267–1274, 2008.

[21] Jeff Palmucci Gilbert Syswerda. The application of genetic algorithms to resource

scheduling. In International Conference on Genetic Algorithms, pages 502–508, 1991.

BIBLIOGRAPHY 218

[22] M. P Fourman. Compaction of symbolic layout using genetic algorithms. In Proceedings

of the First International Conference on Genetic Algorithms, pages 141–153, 1985.

[23] Fonesca C. M. and Fleming P. J. Genetic algorithms for multiobjective optimization:

formulation, discussion and generalization. In Proceedings of the Fifth International

Conference on Genetic Algorithms, pages 416–423, 1993.

[24] J. Beis and D. G. Lowe. Shape indexing using approximate nearest-neighbour search

in high-dimensional spaces. In In Proc. Intenational Conference on Computer Vision and

Pattern Recognition, pages 1000–1006, 1997.

[25] Marc Ebner. Evolving color constancy for an artificial retina. In Genetic Programming,

Proceedings of EuroGP’2001, volume 2038 of LNCS, pages 11–22. Springer-Verlag,

2001.

[26] R.A Fisher. The Genetical Theory of Natural Selection. Dover, 1958.

[27] James E. Baker. Reducing bias and inefficiency in the selection algorithm. In Procee-

dings of the Second International Conference on Genetic Algorithms and their Application,

pages 14–21, 1987.

[28] Darrell Whitley. The GENITOR algorithm and selection pressure: Why rank-based allo-

cation of reproductive trials is best. In Proceedings of the Third International Conference

on Genetic Algorithms. Morgan Kaufman, 1989.

[29] Riccardo Poli. Tournament selection, iterated coupon-collection problem, and

backward-chaining evolutionary algorithms. In Foundations of Genetic Algorithms 8,

volume 3469 of Lecture Notes in Computer Science, pages 132–155. Springer-Verlag,

2005.

[30] Huayang Xie, Mengjie Zhang, and Peter Andreae. Another investigation on tournament

selection: modelling and visualisation. In GECCO ’07: Proceedings of the 9th annual

conference on Genetic and evolutionary computation, pages 1468–1475. ACM, 2007.

[31] Artem Sokolov and Darrell Whitley. Unbiased tournament selection. In GECCO ’05:

Proceedings of the 2005 conference on Genetic and evolutionary computation, pages

1131–1138. ACM, 2005.

BIBLIOGRAPHY 219

[32] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis,

and first results. TCGA Report No. 89003, University of Alabama, 1989.

[33] M. R. Leuze C.B. Pettey and J. J. Grefenstette. A parallel genetic algorithm. In Procee-

dings of the Second International Conference on Genetic Algorithms and their Application,

pages 155–161, 1987.

[34] David J.C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge

University Press, 2003.

[35] Peter Nordin, Frank Francone, and Wolfgang Banzhaf. Explicitly defined introns and

destructive crossover in genetic programming. In Advances in Genetic Programming 2,

chapter 6, pages 111–134. MIT Press, Cambridge, MA, USA, 1996.

[36] Riccardo Poli and William B. Langdon. On the search properties of different crossover

operators in genetic programming. In Genetic Programming 1998: Proceedings of the

Third Annual Conference, pages 293–301, University of Wisconsin, Madison, Wisconsin,

USA, 1998. Morgan Kaufmann.

[37] Walter Alden Tackett. Greedy recombination and genetic search on the space of com-

puter programs. In Foundations of Genetic Algorithms 3, pages 271–297. Morgan Kauf-

mann, 1994. Published 1995.

[38] Hitoshi Iba Takuya Ito and Satoshi Sato. Non-destructive depth-dependent crossover

for genetic programming. In Proceedings of the First European Workshop on Genetic

Programming, volume 1391, pages 71–82. LNCS, 1998.

[39] Kevin J. Lang. Hill climbing beats genetic search on a boolean circuit synthesis of

Koza’s. In Proceedings of the Twelfth International Conference on Machine Learning.

Morgan Kaufmann, 1995.

[40] Mengjie Zhang, Xiaoying Gao, and Weijun Lou. A new crossover operator in genetic

programming for object classification. IEEE Transactions on Systems, Man and Cyberne-

tics, Part B, 37(5):1332–1343, 2007.

BIBLIOGRAPHY 220

[41] Patrik D’haeseleer. Context preserving crossover in genetic programming. In Procee-

dings of the 1994 IEEE World Congress on Computational Intelligence, volume 1, pages

256–261, 1994.

[42] S. Hengproprohm and P. Chongstitvatana. Selective crossover in genetic programming.

In In ISCIT International Symposium on Communications and Information Technologies,

2001.

[43] Alan Piszcz and Terence Soule. Dynamics of evolutionary robustness. In GECCO 2006:

Proceedings of the 8th annual conference on Genetic and evolutionary computation, vo-

lume 1, pages 871–878. ACM Press, 2006.

[44] Riccardo Poli, Nicholas F. McPhee, and Leonardo Vanneschi. Elitism reduces bloat in

genetic programming. In GECCO ’08: Proceedings of the 10th annual conference on

Genetic and evolutionary computation. ACM Press, 2008.

[45] David Andre. Automatically defined features: The simultaneous evolution of 2-

dimensional feature detectors and an algorithm for using them. In K. E. Kinnear Jr,

editor, Advances in Genetic Programming. MIT Press, 1994.

[46] Jurgen Wakunda and Andreas Zell. A new selection scheme for steady-state evolution

strategies. In In Proceedings of the Genetic and Evolutionary Computation Conference,

pages 794–801. Morgan Kaufmann Publishers, 2000.

[47] J. H Holland and J. S. Reitman. Cognitive Systems based on Adaptive Algorithms. Aca-

demic Press, 1978.

[48] Stewart W. Wilson. Classifier fitness based on accuracy. Evolutionary Computation,

3(2):149–175, 1995. http://prediction-dynamics.com/.

[49] Jeroen Eggermont, Agoston E. Eiben, and Jano I. van Hemert. A comparison of gene-

tic programming variants for data classification. In Advances in Intelligent Data Ana-

lysis, Third International Symposium, IDA-99, volume 1642 of LNCS, pages 281–290.

Springer-Verlag, 1999.

[50] Kenneth Alan De Jong. An analysis of the behavior of a class of genetic adaptive systems.

PhD thesis, University of Michigan, Ann Arbor, MI, USA, 1975.

BIBLIOGRAPHY 221

[51] J.R. Parker. Algorithms for Image Processing and Computer Vision. Wiley & Sons, 1996.

[52] E.R. Davies. Machine Vision: Theory, Algorithms, Practicalities. 3rd Edition. Morgan

Kaufmann, 2005.

[53] E.R. Davies. On the noise suppression and image enhancement characteristics of the

median, truncated median and mode filters. Pattern Recognition Letters, 7:87–97, 1988.

[54] K.K. Ma T. Chen and L.H. Chen. Tri-state median filter for image denoising. IEEE

Transactions in Image Processing, 8:1834–1838, 1999.

[55] Nemanja Petrovic and Vladimir Crnojevic. Impulse noise detection based on robust

statistics and genetic programming. In Advanced Concepts for Intelligent Vision Systems,

7th International Conference, ACIVS 2005, Proceedings, volume 3708 of LNCS, pages

643–649. Springer, 2005.

[56] Craig W. Reynolds. Evolution of obstacle avoidance behaviour:using noise to promote

robust solutions. In Advances in Genetic Programming, chapter 10, pages 221–241. MIT

Press, 1994.

[57] Roongroj Nopsuwanchai and Prabhas Chongstitvatana. Improving robustness of ro-

bot programs generated by genetic programming for dynamic environments. In In

Proceedings of the Asia-Pasific Conference on Circuits and Systems (APCCAS98), pages

523–526, 1998.

[58] David G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 60(2):91–110, 2004.

[59] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features. In

9th European Conference on Computer Vision, 2006.

[60] Ching Yang Wang. Edge Detection Esing Template Matching. PhD thesis, Duke University,

1985.

[61] D. Marr and E. Hildreth. Theory of edge detection. In Proceedings of the Royal Society,

pages 187–217, 1980.

BIBLIOGRAPHY 222

[62] F. John Canny. A Computational Approach to Edge Detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

[63] F. Bergholm. Edge focusing. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 9(6):726–741, 1987.

[64] C.A. Rothwell, J.L Mundy, W. Hoffman, and V.D. Nguyen. Driving vision by topology.

In International Symposium on Computer Vision, pages 395–400, 1995.

[65] Christopher Harris and Bernard Buxton. Evolving edge detectors with genetic pro-

gramming. In Genetic Programming 1996: Proceedings of the First Annual Conference,

pages 309–315. MIT Press, 1996.

[66] Christopher Harris and Bernard Buxton. Low-level edge detection using genetic pro-

gramming: performance, specificity and application to real-world signals. Technical

Report RN/97/7, University College London, 1997.

[67] C.H. Chao and A. P. Dhawan. Edge detection using Hopfield neural network. In

Applications of Artificial Neural Networks V, volume 2243, pages 242–251, 1994.

[68] S.M. Bhandarkar, Y.Q. Zhang, and W.D. Potter. An edge-detection technique using

genetic algorithm-based optimization. Pattern Recognition, 27(9):1159–1180, 1994.

[69] Byatia P. Srinivasan V. and S.H. Ong. Edge detection using a neural network. Pattern

Recognition, 27(12):1653–1662, 1994.

[70] Leonardo Trujillo and Gustavo Olague. Synthesis of interest point detectors through

genetic programming. In GECCO ’06: Proceedings of the 8th annual conference on

Genetic and evolutionary computation, pages 887–894. ACM, 2006.

[71] S.M. Smith. Susan - a new approach to low level image processing. Technical report,

Defence Research Agency, 1995.

[72] N. Otsu. A threshold selection method from gray-level histograms. IEEE Transactions

on Systems, Man and Cybernetics, 9(1):62–66, 1979.

[73] R.B. Ohlander. Analysis of Natural Scenes. PhD thesis, Carnegie-Mellon University,

Pittsburgh, PA, USA, 1975.

BIBLIOGRAPHY 223

[74] B. Bhanu and B.A. Parvin. Segmentation of natural scenes. Pattern Recognition,

20(5):487–496, 1987.

[75] S. Beucher and C. Lantuéjoul. Use of watersheds in contour detection. In In Proc.

International Workshop on Image Processing, Real-Time Edge and Motion Detection/Esti-

mation, 1979.

[76] D. Martin, C.Fowlkes, D. Tal, and J. Malik. A database of human segmented natural

images and its application to evaluating segmentation algorithms and measuring eco-

logical statistics. In Proceedings of the 8th International Conference on Computer Vision,

volume 2, pages 416–423, 2001.

[77] N.W. Campbell, B.T. Thomas, and T.Troscianko. Automatic segmentation and clas-

sification of outdoor images using neural networks. International Journal of Neural

Systems, 8:137–144, 1997.

[78] Steven P. Brumby, James Theiler, Simon Perkins, Neal R. Harvey, and John J. Szy-

manski. Genetic programming approach to extracting features from remotely sensed

imagery. In FUSION 2001: Fourth International Conference on Image Fusion, 2001.

[79] Y.L. Chang and X. Li. Adaptive image region growing. IEEE Transactions on Image

Processing, 3(6):868–873, 1994.

[80] Riccardo Poli. Genetic programming for image analysis. In Genetic Programming 1996:

Proceedings of the First Annual Conference, pages 363–368. MIT Press, 1996.

[81] Mark E. Roberts and Ela Claridge. An artificially evolved vision system for segmenting

skin lesion images. In Proceedings of the 6th International Conference on Medical Image

Computing and Computer-Assisted Intervention (MICCAI), volume 2878 of LNCS, pages

655–662. Springer-Verlag, 2003.

[82] K. Shanmugan Haralick, R.M. and I. Dinstein. Textural features for image classification.

IEEE Transactions on Systems, Man, and Cybernetics, SMC-3:610–621, 1973.

[83] Andy Song and Victor Ciesielski. Texture analysis by genetic programming. In Procee-

dings of the IEEE Congress on Evolutionary Computation, pages 2092–2099, 2004.

BIBLIOGRAPHY 224

[84] K.I. Laws. Texture energy measures. In In Proceedings of Image Understanding Work-

shop, pages 47–51, 1979.

[85] Marcos I. Quintana, R. Poli, and E. Claridge. Genetic programming for mathematical

morphology algorithm design on binary images. In Artificial Intelligence, Proceedings of

the International Conference KBCS-2002, pages 161–171, 2002.

[86] Jean Serra. Image Analysis and Mathematical Morphology. Academic Press, Orlando,

Florida, USA, 1983.

[87] M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In Computer Vision

and Pattern Recognition, 1991., pages 586–591, 1991.

[88] Shumeet Baluja Henry Rowley and Takeo Kanade. Rotation invariant neural network-

based face detection. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, 1998.

[89] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. In European Conference on Computational

Learning Theory, pages 23–37, 1995.

[90] Jay F. Winkeler and B. S. Manjunath. Experiments with genetic programming for active

vision tasks, 1997.

[91] Walter A. Tackett. Genetic programming for feature discovery and image discrimina-

tion. In Proceedings of the Fifth International Conference on Genetic Algorithms, pages

303–309, 1993.

[92] Simon C. Roberts and Daniel Howard. Evolution of Vehicle Detectors for Infra-red Li-

nescan Imagery, volume 1596 of Lecture notes in computer science, pages 110–125.

Springer-Verlag, 1999.

[93] Daniel Howard, Simon C. Roberts, and Richard Brankin. Evolution of ship detectors

for satellite SAR imagery. In Genetic Programming, Proceedings of EuroGP’99, volume

1598 of LNCS, pages 135–148. Springer-Verlag, 1999.

[94] M. Roberts and E. Claridge. Cooperative coevolution of image feature construction

and object detection, 2004.

BIBLIOGRAPHY 225

[95] Mengjie Zhang and Victor Ciesielski. Genetic programming for multiple class object

detection. In Norman Foo, editor, Proceedings of the 12th Australian Joint Conference

on Artificial Intelligence, pages 180–192. Springer-Verlag, 1999.

[96] Peter Andreae Mengjie Zhang and Mark Pritchard. Pixel statistics and false alarm area

in genetic programming for object detection. In Applications of Evolutionary Compu-

ting, 2003.

[97] Polina K. Spivak. Discovery of optical character recognition algorithms using genetic

programming. In John R. Koza, editor, Genetic Algorithms and Genetic Programming at

Stanford 2002, pages 223–232. Stanford Bookstore, Stanford, California, 2002.

[98] David Andre. Learning and upgrading rules for an ocr system using genetic program-

ming. In In Proceedings of the 1994 IEEE World Congress on Computational Intelligence,

pages 27–29. IEEE Press, 1994.

[99] Ankur Teredesai, J. Park, and Venugopal Govindaraju. Active handwritten character

recognition using genetic programming. In Genetic Programming, Proceedings of Eu-

roGP’2001, volume 2038 of LNCS, pages 371–379. Springer-Verlag, 2001.

[100] Michael P. Johnson, Pattie Maes, and Trevor Darrell. Evolving visual routines. In

Artificial Life IV: Proceedings of the Fourth International Workshop on the Synthesis and

Simulation of Living Systems, pages 198–209. MIT Press, 1994.

[101] Hu M.K. Visual pattern recognition by moment invariants. IRE Trans. Info. Theory,

8:179–187, 1962.

[102] J Sklansky. Measuring concavity on a rectangular mosaic. IEEE Transactions on Com-

puters, pages 1355–1364, 1972.

[103] Ossama El Badawy1 and Mohamed Kamel. Matching concavity trees. In Structural,

Syntactic, and Statistical Pattern Recognition, volume 3138 of LNCS, pages 556–564.

Springer Verlag, 2004.

[104] Hector Montes and Jeremy Wyatt. Cartesian genetic programming for image proces-

sing tasks. In Proceedings of IASTED International Conference on Neural Networks and

Computational Intelligence (NCI 2003), 2003.

BIBLIOGRAPHY 226

[105] I. Fujinaga M. Droettboom, K. MacMillan. The gamera framework for building custom

recognition systems. In Symposium on Document Image Understanding Technologies,

pages 275–286, 2003.

[106] Robotcub: An international project on humanoid cognitive systems, 2008.

http://www.robotcub.org.

[107] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1993.

[108] J. R. Quinlan. Generating production rules from examples,. In Proc. Tenth Int. Joint

Conf. on Artificial Intelligence, pages 304–307, 1987.

[109] L. Breiman, J. H. Friedman, R. A. Olshen, , and C. J. Stone. Classification and Regression

Trees. Wadsworth & Brooks, 1984.

[110] Martijn C. J. Bot and William B. Langdon. Application of genetic programming to

induction of linear classification trees. In Genetic Programming, Proceedings of Eu-

roGP’2000, volume 1802 of LNCS, pages 247–258. Springer-Verlag, 2000.

[111] Will Smart and Mengjie Zhang. Using genetic programming for multiclass classification

by simultaneously solving component binary classification problems. Technical Report

CS-TR-05-1, Computer Science, Victoria University of Wellington, New Zealand, 2005.

[112] Durga Prasad Muni, Nikhil R Pal, and Jyotirmay Das. A novel approach to design

classifier using genetic programming. IEEE Transactions on Evolutionary Computation,

8(2):183–196, 2004.

[113] Yun Zhang and Mengjie Zhang. A new program structure in genetic programming

for object classification. In Proceeding of Image and Vision Computing NZ International

Conference, pages 459–465, 2004.

[114] Thomas Loveard and Victor Ciesielski. Representing classification problems in genetic

programming. In Proceedings of the Congress on Evolutionary Computation, volume 2,

pages 1070–1077. IEEE Press, 2001.

BIBLIOGRAPHY 227

[115] Mengjie Zhang, Victor B. Ciesielski, and Peter Andreae. A domain-independent win-

dow approach to multiclass object detection using genetic programming. EURASIP

Journal on Applied Signal Processing, 2003(8):841–859, 2003. Special Issue on Gene-

tic and Evolutionary Computation for Signal Processing and Image Analysis.

[116] Will Smart and Mengjie Zhang. Probability based genetic programming for multiclass

object classification. Technical Report CS-TR-04-7, Computer Science, Victoria Univer-

sity of Wellington, New Zealand, 2004.

[117] J. N. Kapur. Maximum Entropy Models in Science and Engineering. Wiley-Interscience,

1990.

[118] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In

International Conference on Machine Learning, pages 148–156, 1996.

[119] W. B. Langdon and B. F. Buxton. Genetic programming for combining classifiers. In

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001),

pages 66–73. Morgan Kaufmann, 2001.

[120] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Francone. Genetic

programming: an introduction: on the automatic evolution of computer programs and

its applications. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1998.

[121] John Koza. Genetic programming, 2007. http://www.genetic-programming.com/.

[122] Olly Oechsle. Ecj2java, 2005. http://vase.essex.ac.uk/software/ecj2java/.

[123] Kumar Chellapilla. Evolving computer programs without subtree crossover. IEEE Tran-

sactions on Evolutionary Computation, 1(3):209–216, 1997.

[124] Sean Luke and Lee Spector. A comparison of crossover and mutation in genetic pro-

gramming. In Genetic Programming 1997: Proceedings of the Second Annual Conference,

pages 240–248, Stanford University, CA, USA, 1997. Morgan Kaufmann.

[125] T. Blickle and L. Thiele. A mathematical analysis of tournament selection, 1995.

[126] Tatsuya Motoki. Calculating the expected loss of diversity of selection schemes. Evolu-

tionary Computataion, 10(4):397–422, 2002.

BIBLIOGRAPHY 228

[127] Gearoid Murphy and Conor Ryan. A simple powerful constraint for genetic program-

ming. Genetic Programming, Lecture Notes in Computer Science, 4971, 2008.

[128] Sara Silva and Jonas Almeida. Dynamic maximum tree depth. In Genetic and Evolutio-

nary Computation – GECCO-2003, volume 2724 of LNCS, pages 1776–1787. Springer-

Verlag, 2003.

[129] Thomas Loveard and Victor Ciesielski. Representing classification problems in genetic

programming. In Proceedings of the Congress on Evolutionary Computation, volume 2,

pages 1070–1077. IEEE Press, 2001.

[130] Been-Chian Chien, Jui-Hsiang Yang, and Wen-Yang Lin. Generating effective classifiers

with supervised learning of genetic programming. In Data Warehousing and Knowledge

Discovery, pages 192–201, 2003.

[131] Gianluigi Folino, Clara Pizzuti, and G. Spezzano. Improving cooperative gp ensemble

with clustering and pruning for pattern classification. In GECCO 2006, pages 791–798.

ACM, 2006.

[132] Wei-yin Loh Tjen-sien Lim. An empirical comparison of decision trees and other clas-

sification methods. Technical report, University of Wisconsin Madison, 1997.

[133] R.A Fisher. The use of multiple measurements in taxonomic problems. Annals of

Eugenics, 7:179–188, 1936.

[134] P. McCullagh and John A. Nelder. Generalized Linear Models, Second Edition. Springer,

1989.

[135] Frank Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65(6):386–408, 1958.

[136] Pedro Domingos and Michael J. Pazzani. On the optimality of the simple bayesian

classifier under zero-one loss. Machine Learning, 29(2-3):103–130, 1997.

[137] W.H. Wolberg W.N. Street and O.L. Mangasarian. Nuclear feature extraction for breast

tumor diagnosis. In International Symposium on Electronic Imaging: Science and Tech-

nology, volume 1905, pages 861–870, 1993.

BIBLIOGRAPHY 229

[138] F. C. Crow. Summed-area tables for texture mapping. Journal of Computer Graphics,

18(3):207–212, 1984.

[139] Donald E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algo-

rithms, 3rd Edition. Boston: Addison-Wesley, 1993.

[140] B.A Wandell. Analysis of the retinex theory of color vision. Journal of the Optical

Society of America, 3:1651–1661, 1986.

[141] G. Buchsbaum. A spatial processor model for object colour perception. J. Franklin Ins.,

310(1):337–350, 1980.

[142] E.H. Land. Recent advances in retinex theory and some implications for cortical appli-

cations: Colour vision and the natural image. In Proceedings of the National Academy

of Science, volume 80, pages 5163–5169, 1984.

[143] T. Gevers and A. W. M. Smeulders. Colour based object recognition. Pattern Recogni-

tion, 32:453–464, 1999.

[144] Fuhui Long Hanchuan Peng and Chris Ding. Feature selection based on mutual in-

formation: criteria of max-dependency, max-relevance, and min-redundancy. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(8):1226–1238, 2005.

[145] Ron Kohavi and George John. Wrappers for feature subset selection. Artificial Intelli-

gence Journal, special issue on relevance, 97(1):273–324, 1997.

[146] R. Fergus. Caltech leaves dataset, 2003.

[147] M. Roberts. The effectiveness of cost-based subtree caching mechanisms in typed gene-

tic programming for image segmentation. In Applications of Evolutionary Computation,

Proceedings of EvoIASP 2003, Colume 2611 of LNCS, pages 444–454, 2003.

[148] Maarten Keijzer. Alternatives in subtree caching for genetic programming. In Genetic

Programming 7th European Conference, EuroGP 2004, Proceedings, volume 3003 of

LNCS, pages 328–337, 2004.

BIBLIOGRAPHY 230

[149] Mark E. Roberts and Ela Claridge. A multistage approach to cooperatively coevolving

feature construction and object detection. In Applications of Evolutionary Computing,

volume 3449 of LNCS. Springer Verlag, 2005.

[150] Thad Starner, Joshua Weaver, and Alex Pentland. Real-time american sign language re-

cognition using desk and wearable computer based video. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 20(12):1371–1375, 1998.

[151] Y. LeCun, L. Bottou, Y. Bengio, , and P. Haffner. Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[152] S. K. Nayar S. A. Nene and H. Murase. Columbia object image library (coil-100).

Technical Report CUCS-006-96, Columbia University, 1996.

[153] Visionsystems, 2009. http://www.visionsystem.com/.

[154] Cognex vision systems, 2009. www.cognex.com.

[155] M. Koppen and B. Nickolay. Design of image exploring agent using genetic program-

ming. In Proc. IIZUKA’96, pages 549–552, 1996.

[156] Yang Zhang and Peter I. Rockett. Evolving optimal feature extraction using multi-

objective genetic programming: a methodology and preliminary study on edge detec-

tion. In GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary

computation, volume 1, pages 795–802. ACM Press, 2005.

[157] Cristopher T. M. Graae, Peter Nordin, and Mats Nordahl. Stereoscopic vision for a

humanoid robot using genetic programming. In Real-World Applications of Evolutionary

Computing, volume 1803 of LNCS. Springer-Verlag, 2000.

[158] Ankur Teredesai and Venu Govindaraju. Gp-based secondary classifiers. Pattern Recog-

nition, 38(4):505 – 512, 2005.

[159] Fernando E. B. Otero, Monique M. S. Silvia, and Alex A. Freitas. Genetic programming

for attribute construction in data mining. In GECCO ’02: Proceedings of the Genetic and

Evolutionary Computation Conference, page 1270, 2002.

	Introduction
	The Rise of Machine Vision
	Machine Learning
	Evolved Vision Software
	Challenges
	Contributions
	Thesis Structure

	An Overview of Genetic Programming
	The Inspiration Behind Evolutionary Algorithms
	A Very Brief History of Evolutionary Computation
	Evolutionary Strategies (ES)
	Genetic Algorithms (GA)
	Genetic Programming (GP)

	Components
	The Representation of Individuals
	The Creation of Individuals
	The Evaluation of an Individual's Fitness
	The Selection of Individuals
	The Genetic Operators
	Generation Gap Methods

	Conclusion

	A Brief Overview of Computer Vision
	Image Acquisition
	Low-Level Vision
	Edge Detection
	Line Detection
	Other Points of Interest

	Segmentation
	Applications and Image Features

	Object Detection
	Vision Systems
	Conclusions

	Classification by Genetic Programming
	Representing Classifiers in GP
	Evolving Decision Trees
	f(X) Representations
	Binary Decomposition
	One Individual, Multiple Trees
	Modi Program Structure
	Range Selection
	Computer Vision Inspired Techniques
	Choosing a Representation

	Investigating Range Selection
	DRS Filling
	Parameter Free DRS – ``DRS2''
	Number of Slots
	Confidence Estimation

	Classification Frameworks
	Classifier Fusion
	Classifier Evolution by Partial Solutions (PS)
	Intelligent Classification System (ICS)

	Conclusions

	Validating the Evolved Learning System
	Building a GP System
	Specification
	Implementation Notes
	Novel Features
	Parameter Choices for a Generic System
	Tree Builder Parameter Choices
	Performance Considerations
	Function Set
	Terminal Set

	The Evaluation of Fitness
	Sample Weighting
	Encouraging Generalisation Ability

	Comparisons
	Dataset Interface
	Comparing with ECJ
	Comparing to Other GP Results
	Comparing to Other Classification Techniques

	A Discussion

	GP for Low-Level Vision Tasks
	The Approach
	Segmentation
	Window Detection
	Feature Detection Approach

	Evaluating Image Features
	Image Features
	Colour Features
	Texture Features
	Location-Based Features
	Other Features
	Invariance

	Feature Selection
	Experiments

	Performance Considerations
	Image-Level Caching
	Fitness Caching
	Deployment Procedure

	Experimenting with Preprocessing
	Applications of Segmentation
	Skin Segmentation
	Terrain Segmentation
	Object Detection
	OCR Segmentation
	Conclusion

	A Framework for Evolving Solutions to Vision Problems
	More Complex Vision
	Creating Objects

	Classifying Objects
	Shape Descriptors
	Material Features

	A Framework for Evolving Vision Systems
	Sub-Objects
	Discussion

	Jasmine
	Training Procedure
	Training Data Selection
	Feature Selection
	Feature Detector Evolution
	Object Classification in Jasmine
	Vision System Object

	Results
	Pasta Shape Recognition
	Hand Gesture Recognition
	Lesion Classification
	The MNIST Dataset
	Flag Recognition
	Automatic Number Plate Recognition (ANPR)

	Applicability
	Conclusion

	Conclusions
	Assessment
	Multi-Stage Vision Systems
	Competitiveness
	Applicability
	Genetic Programming

	Future Directions
	Resources

	Closing Remarks

