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This document provides a tutorial on performance characterization in computer vision. It
explains why learning to characterize the performances of vision techniques is crucial to the
discipline’s development. It describes the usual procedure for evaluating vision algorithms
and how to assess whether performance differences are statistically valid. Some remarks are
also made about the difficulties of vision ‘in the wild.’
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1 Introduction

The discipline variously known as Computer Vision, Machine Vision and Image Analysis has its
origins in the early artificial intelligence research of the late 1950s and early 1960s. Hence,
roughly three generations of researchers have pitted their wits against the problem. The
pioneers of the first generation worked with computers that were barely capable of handling
image data — processing had to be done line-by-line from backing store — and programs
almost always had to be run as batch jobs, ruling out any form of interaction. Even capturing
digital images was an impressive feat. Under such difficult conditions, the techniques that
were developed were inevitably based on the mathematics of image formation and exploited
the values of pixels in neighbouring regions. Implementing them was a non-trivial task, so
much so that pretty well any result was an impressive achievement.

The second generation of researchers coincided with the birth of the workstation. At last,
an individual researcher could process images online, display them, and interact with them.
These extra capabilities allowed researchers to develop algorithms that involved significant
amounts of processing. A major characteristic of many algorithms developed during this
second generation was the quest for optimality. By formulating and manipulating a set of
equations that described the nature of the problem, a solution can usually be obtained by a
least-squares method which, of course, is in some sense optimal. Consequently, any number
of techniques appeared with this ‘optimality’ tag. Sadly, none of the papers that described
them were able to provide credible experimental evidence that the results from the optimal
technique was significantly better than existing (presumably sub-optimal) ones.

We are now well into the third generation. Computers, even PCs, are so fast and so
well-endowed with storage that it is entirely feasible to process large datasets of images in a
reasonable time; this has resulted use of vision techniques that learn1 and, of more relevance
to this document, to assessing the performance of algorithms. Perhaps the most visible (no
pun intended) aspect of the latter is the competitions that are often organized in association
with major vision conferences. These essentially ask the question “which algorithm is best?”
Although a natural enough question to ask, it lacks subtlety and is potentially rather danger-
ous: if the community as a whole adopts an algorithm as “the standard” and concentrates on
improving it further, that action can stifle research into other algorithms. A better approach
is to make available a “strawman” algorithm which embodies an approach that is known to
work but does not quite represent the state of the art. This might be, for example, the “ei-
genfaces” approach [1] without refinements for face recognition, the Canny edge detector,
and so on. Authors can use the strawman for comparison, and anything that out-performs
it is a good candidate for publication; conversely, anything that performs less well than the
strawman needs improvement.

If asking which algorithm is best is unsubtle, then what is a more appropriate question?
We believe researchers should be asking “why does one algorithm out-perform another?” To
answer the latter question, one must explore what characteristics of the inputs affect the
algorithms’ performances and by how much. In fact, one can carry this process out on an
algorithm in isolation as well as comparing algorithms. This is what is meant by performance
characterization, the subject of this tutorial, and is a closer match to the way knowledge and
understanding are advanced in other areas of science and engineering.

It may seem from the above that performance assessment and characterization are intel-
1Hoorah!
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lectual exercises, divorced from the gritty realities of applying vision techniques to real-world
problems; but nothing could be further from the truth. Vision techniques have a well-deserved
reputation for being fragile, working well for one developer but failing dismally for another
who applies them to imagery with slightly different properties. This should not come as a sur-
prise, for very few researchers have made any effort to assess how well different algorithms
work on imagery as its properties differ — as the amount of noise present changes, say —
never mind making the algorithms more robust to them. So, far from being an abstract exer-
cise, performance characterization is absolutely essential if computer vision is to escape from
the research laboratory and be applied to the thousands of problems that would benefit from
it. Indeed, the first paper reviewing this area has only fairly recently appeared [2].

The process conventionally adopted for performance assessment and characterization has
not yet been expounded; that is done in Section 3, following a short statistical preamble in
Section 2. Section 4 and Section 5 then describe the underlying statistical principles and
describes those statistical tests, displays and graphs in common use for characterizing an
individual algorithm and for comparing algorithms respectively. Finally, Section 7 gives some
concluding remarks.

2 A Statistical Preamble

The amount of statistical knowledge needed in performance work is not that great; all that
is needed to get going is an understanding what mean, variance (and standard deviation)
measure — though some care is sometimes required to interpret results correctly. It is also
important to realise that there are many statistical distributions (e.g., tossing coins involves a
binomial distribution), and that several of them approach the Gaussian distribution only for
large numbers of samples.

Having mentioned coin tossing, let us use this to think about assessment. Imagine taking
a fair coin and tossing it a number of times. Let us say that we obtain:

1. 3 heads from 10 tosses;

2. 30 heads from 100 tosses;

3. 300 heads from 1,000 tosses.

Let us now consider which of these is the most surprising.
A naïve answer is that they are all equally surprising as

3
10

=
30
100

=
300
1000

but this is the wrong way to interpret the results. We know that a coin toss is able to produce
only two results, so it obeys a binomial distribution

P (t) =
(
N
t

)
pt(1− p)t (1)

where P (t) is the probability of obtaining t successes (heads) fromN trials, p is the probability
of success in a single trial and (

N
t

)
=

N !
k!(N − k)!

. (2)
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The mean of the distribution is Np and the variance Np(1− p). As the coin is fair, p = 1
2 and

the three cases work out as:

1. The expected number of heads (i.e., the mean) is Np = 5. The standard deviation is√
Np(1− p) =

√
10× 1

2 ×
1
2 = 1.58. Hence, 3 heads is (5 − 3)/1.58 ≈ 1.3 standard

deviations from the mean.

2. The expected number of heads is 50 and the standard deviation is
√

100× 1
2 ×

1
2 = 5.

30 heads is (50− 30)/5 = 4 standard deviations from the mean.

3. The expected number of heads is 500 and the standard deviation is
√

1000× 1
2 ×

1
2 =

15.8. 300 heads is (500− 300)/15.8 ≈ 13 standard deviations from the mean.

This means that — as you probably expected — the third case is by far the most surprising.
There are three things to take from this simple example. Firstly, as the number of ex-

periments increases, results far away from the mean become increasingly unlikely to happen
purely by chance. Secondly, intuition based around the mean and standard deviation, coupled
with a notion of the distribution involved, is usually enough to get an idea of what is going
on. And thirdly, it is possible to predict how likely events are to happen by chance.

3 The Performance Assessment and Characterization Processes

There are few occasions when it is possible to predict the performance of an algorithm ana-
lytically: there are normally too many underlying assumptions, or the task is just too com-
plicated (but see [3] for a rare exception). So performance is almost universally assessed
empirically, by running the program on a large set of input data whose correct outputs are
known and counting the number of cases in which the program produces correct and incorrect
results. Each individual test that is performed can yield one of four possible results:

True positive: (also known as true acceptance or true match) occurs when a test that should
yield a correct result does so.

True negative: (also known as true rejection or true non-match) occurs when a test that
should yield an incorrect result does so.

False positive: (also known as false rejection, false non-match or type I error) occurs when a
test that should yield a correct result actually yields an incorrect one (in vision testing,
usually the wrong class of output).

False negative: (also known as false acceptance, false match, false alarm or type II error)
occurs when a test that should yield an incorrect result actually yields a correct one
(e.g., finding that a face detector works on a picture of a coffee cup).

There is occasionally some confusion in the literature over the terms “false negative” and
“false positive,” which is why their meanings have been given here. The testing procedure
involves keeping track of these four quantities. Performance assessment work normally uses
them with little additional consideration: the algorithm with the highest true rate (or, equi-
valently, the lowest false rate) is normally taken in comparisons and competitions to be the
best.
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(a) Original
image

(b) Corresponding
template

(c) Ambiguity at
edge of template

Figure 1: An object against a plain background

To be able to perform testing in this way, each individual test requires three pieces of
information:

1. the input to the program under test;

2. the corresponding expected output from the program under test;

3. whether this output corresponds to a success or a failure.

Vision researchers rarely test explicitly for failures, e.g. by running a vision algorithm on an
image whose pixels are all set to the same value.

To fix these ideas in our minds, let us consider the example of using a procedure to try
detecting in an image an object surrounded by a plain background. Specifically, Figure 1(a)
shows a vase against a plain background. A template image, Figure 1(b), can be constructed
to determine which pixels are to be regarded as ‘vase’ pixels; the rest would be regarded as
‘background’. On applying the procedure, if a pixel is classed as ‘vase’ and it is known from
the template to be part of the vase, then this pixel is a true positive. If a pixel is classed as
‘background’ and it is known to be part of the background (i.e., not vase), then this pixel is a
true negative. If a pixel is classed as ‘vase’ but it is known to be part of the background, then
this pixel is a false positive. If a pixel is classed as ‘background’ but it is known to be part of
the vase, then this pixel is a false negative.

While it is obvious that the performance depends on how accurately the template has been
determined, these values give a measure of algorithm performance. In particular, we should
expect both false positives and false negatives to occur most frequently in the region where
the object meets the background because there will be pixels where there are contributions
from both the object and its background, as illustrated in Figure 1(c). It would be wise to
weight errors in this region less than errors elsewhere in the image, or just to ignore these
regions.

It must be appreciated that there is always a trade-off between true positive and false
positive detection. If a procedure is set to detect all the true positive cases then it will also
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tend to give a larger number of false positives. Conversely, if the procedure is set to minimize
false positive detection then the number of true positives it detects will be greatly reduced.
However, tables of true positives etc. are difficult to analyze and compare, so results are
frequently shown graphically using ROC or similar curves (see Section 4).

It should in principle be possible to compare the success rates of algorithms obtained
using different datasets; but in practice this does not work. This is, in effect, the same as
saying that the datasets used in performing the evaluations are not large and comprehensive
enough, for if they were it would be possible simply to compare success rates. The number of
ways in which image data may vary is probably so large that it is not feasible to encompass
all of them in a dataset, so it is currently necessary to use the same datasets when evaluating
algorithms — and that means using the same training data as well as the same test data.
Sadly, little effort has been expended on the production of standard datasets for testing vision
algorithms until recently; the FERET dataset (e.g., [4]) is probably the best example to date.

Most papers currently compare algorithms purely on the basis of their ROC or equivalent
curves. However, this is dangerous, for this approach takes no account of the number of
tests that has been performed: the size of the dataset may be sufficiently small that any
difference in performance could have arisen purely by chance. Instead, a standard statistical
test, McNemar’s test (see Section 5), should be used as it takes this into account. McNemar’s
test requires that the results of applying both algorithms on the same dataset are available,
so this fits in well with the comments in the previous paragraph.

An argument that is often put forward is that vision algorithms are designed to perform
particular tasks, so it only makes sense to test an algorithm on data relating precisely to the
problem, i.e. on real rather than simulated imagery. While this is true to a certain extent —
the range of applications of vision tasks is indeed vast — it ignores the fact that there are gen-
eric algorithms that underlie practically all problem-specific techniques, e.g. edge detection.
Indeed, this really illustrates the distinction between two different types of testing:

technology evaluation: the response of an algorithm to factors such as adjustment of its
tuning parameters, noisy input data, etc.;

application evaluation: how well an algorithm performs a particular task;

where the terminology has been adapted from that in [5]. Technology evaluation is one
example of performance characterization, and we shall return to this topic towards the end
of this document.

To illustrate the distinction between technology and application evaluation, let us con-
sider an example that will be familiar to most computer vision researchers, namely John
Canny’s edge detector [6]. Technology evaluation involves identifying any underlying as-
sumptions (e.g., additive noise) and assessing the effects of varying its tuning parameters
(e.g., its thresholds, the size of its Gaussian convolution mask). This is best done using sim-
ulated data, as it provides the only way that all characteristics of the data can be known.
Conversely, application evaluation assesses the effectiveness of the technique for a particular
task, such as locating line-segments in fMRI datasets. This second task must, of course, be
performed using real data. If the former is performed well, the researcher will have some
idea of how well the algorithm is likely to perform on the latter simply by estimating the
characteristics of the fMRI data — how much and what type of noise, and so on.
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4 Assessing an Individual Algorithm

Tables of true positives etc. are difficult to analyse and compare. Hence, researchers have
introduced methods of presenting the data graphically. We shall consider two of these, the
receiver operating characteristic (ROC) curve and the precision–recall curve. We shall also con-
sider a display that is frequently used in describing the performance of classification studies,
namely the confusion matrix. Other measures and displays do exist, of course; many of them
are described in [7].

4.1 The Receiver Operating Characteristic Curve

A ROC curve is a plot of false positive rate against true positive rate as some parameter is
varied. ROC curves were developed to assess the performance of radar operators during the
second World War. These operators had to make the distinction between friend or foe targets,
and also between targets and noise, from the blips they saw on their screens. Their ability
to make these vital distinctions was called the receiver operating characteristic. These curves
were taken up by the medical profession in the 1970s, who found them useful in bringing
out the sensitivity (true positive rate) versus specifity (1− false positive rate) of, for example,
diagnosis trials. ROC curves are as interpreted as follows (see Figure 2):

• the closer the curve approaches the top left-hand corner of the plot, the more accurate
the test;

• the closer the curve is to a 45◦ diagonal, the worse the test;

• the area under the curve is a measure of the accuracy of the test;

• the plot highlights the trade-off between the true positive rate and the false positive
rate: an increase in true positive rate is accompanied by an increase in false positive
rate.

It should be noted that there does not appear to be a convention as to the orientation of the
plot, so one encounters a variety of orientations in the literature; in such cases, the above
interpretation must be adjusted accordingly.

Figure 2 shows ROC curves for a very good, a good and a very poor (worthless) test.
As stated above, the area under each curve gives a measure of accuracy. An area of unity
represents a perfect test, while a measure of 0.5 (e.g., a 45◦ diagonal) represents a failed test
(random performance). Various methods of estimating the area under the curves have been
suggested, including using a maximum likelihood estimator to fit the data points to a smooth
curve, using Simpson’s rule, and fitting trapezoids under the curve. There are, however, more
effective ways of assessing the overall accuracy of an algorithm, as we shall see.

Error considerations can be indicated on these plots. For example, if a single test is run
on many different sets of images, then the mean false-positive rate can be plotted against the
mean true-positive rate. The assessed confidence limits can then be plotted as error bars or
error ellipses around the points.

Some researchers refer to the equal error rate (EER) of a particular test. The EER is the
point at which the false positive rate is equal to the false negative rate. This may be of use in
applications where the cost of each type of error is equal. The smaller the EER, the better.



Performance Characterization in Computer Vision 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

tr
ue

 p
os

iti
ve

 r
at

e

false positive rate

worthless

goodvery good

Figure 2: Examples of ROC Curves

4.2 Precision–Recall and Related Curves

If we write TP as the number of true positives etc., then a number of quantities, mostly
originating from the information retrieval field, can be derived from them. Those in most
widespread use are:

sensitivity =
TP

TP + FN
(3)

specificity =
TN

TN + FP
(4)

precision =
TP

TP + FP
(5)

recall =
TP

TP + FN
(6)

F = 2
precision× recall
precision + recall

(7)

Precision–recall curves are normally drawn with precision on the ordinate (y) axis, and they
generally run from upper left to lower right. They are increasingly replacing ROC curves in
vision papers.

We have seen that ROC and precision–recall curves are useful in assessing how different
parameters applied to an algorithm affect performance. The following section describes how
algorithms can be compared.

4.3 Confusion Matrices

A confusion matrix [8] contains information on the actual and predicted classifications per-
formed by a system. For example, for a digit-recognition task, a confusion matrix like that in
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Table 1 might arise.

actual predicted
0 1 2 3 4 5 6 7 8 9

0 20 0 0 6 0 0 1 0 10 0
1 0 25 0 0 0 0 0 6 0 0
2 0 0 31 0 0 0 0 0 0 0
3 0 0 0 21 0 0 0 0 10 0
4 0 0 0 0 31 0 0 0 0 0
5 0 0 0 0 0 22 0 0 9 0
6 1 0 0 1 0 2 23 0 3 1
7 0 8 0 0 0 0 0 23 0 0
8 4 0 1 3 2 1 3 0 13 4
9 0 0 0 2 0 0 0 3 1 27

Table 1: Confusion Matrix for a Digit Recognition Task

Numbers along the leading diagonal of the table represent digits that have been classified
correctly, while off-diagonal values show the number of mis-classifications. Hence, small
numbers along the leading diagonal show cases in which classification performance has been
poor, as with ‘8’ in the table. Here, the actual digit ‘0’ has been mis-classified as ‘8’ ten times
and as ‘6’ once, while the digit ‘1’ mis-classified as ‘7’ six times. Conversely, the digit ‘2’ has
never been mis-classified. (Take care when you encounter this in the literature: it is often the
transpose of this table.) There is no reason, of course, why the matrix should be symmetric.

In the particular case that there are two classes, success and failure, the confusion matrix
just reports the number of true positives, etc. as shown below.

predicted predicted
negative positive

actual TN FP
negative
actual FN TP

positive

5 Comparing Algorithms

5.1 Using ROC or Precision–Recall Curves

The most common way that algorithms are compared in the literature is by means of their
ROC or precision–recall curves. This is acceptable to some extent; but the problem is that
researchers hardly ever indicate the accuracy of the points in the curve using error bars or
equivalent, and hence one cannot tell whether any differences in performance are significant.

ROC curves tend not to be as straightforward as those shown in Figure 2. Often the
curves to be compared cross each other, and then it is up to the user to decide which curve
represents the best method for their application. For example, Figure 3, shows that alg1 may
be superior to alg2 when a high true-positive rate is required but alg2 may be preferred
when a low false-positive rate is required.
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Figure 3: Crossing ROC Curves

As the accuracy of vision algorithms tends to be highly data-dependent, comparisons of
curves obtained using different data sets should be treated with suspicion. Hence, the only
viable way to compare algorithms is to run them on the same data. In principle, one could
generate ROC or precision–recall curves for any number of algorithms, plot them with error
bars, and perform visual comparisons. Even in this case, however, it is usually difficult to be
sure whether one algorithm out-performs another significantly.

Hence, comparisons of algorithms tend to be performed with a specific set of tuning para-
meter values. (Running them with settings that correspond to the equal error rate is probably
the most sensible.) When this is done, perhaps under the control of a test harness, an appro-
priate statistical test can be employed. This must take into account not only the number of
false positives etc. but also the number of tests: if one algorithm obtains 50 more false posit-
ives than another in 100,000 tests, the difference is not likely to be significant; but the same
difference in 100 tests almost certainly is (remember the statistical preamble in Section 2).

5.2 McNemar’s Test

The appropriate test to employ for this type of comparison is McNemar’s test. This is a form
of chi-square test for matched paired data. Consider the following 2 × 2 table of results for
two algorithms:

Algorithm A Algorithm A
Failed Succeeded

Algorithm B Nff Nsf

Failed
Algorithm B Nfs Nss

Succeeded
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Z value Degree of confidence Degree of confidence
Two-tailed prediction One-tailed prediction

1.645 90% 95%
1.960 95% 97.5%
2.326 98% 99%
2.576 99% 99.5%

Table 2: Converting Z Scores onto Confidence Limits

McNemar’s test is:

χ2 =
(|Nsf −Nfs| − 1)2

(Nsf +Nfs)
(8)

where the −1 is a continuity correction. We see that McNemar’s test employs both false
positives and false negatives, rather than just one of them.

IfNsf +Nfs (i.e., the number of tests where the algorithms differ) is greater than about 20,
then the value of χ2 will be meaningful. We calculate the Z score (standard score), obtained
from (8) as:

Z =
(|Nsf −Nfs| − 1)√

Nsf +Nfs
(9)

If Algorithm A and Algorithm B give very similar results then Z will be near zero. As their
results diverge, Z will increase. Confidence limits can be associated with the Z value as
shown in Table 2; it is normal to look for Z > 1.96, which means that the results from the
algorithms would be expected to differ by chance only one time in 20.2 Values for two-tailed
and one-tailed predictions are shown in the table as either may be needed, depending on the
hypothesis used: if we assessing whether two algorithms differ, a two-tailed test should be
used; but if we are determining whether one algorithm is better than another, a one-tailed
test is needed.

Further information can also be gleaned from Nsf and Nfs: if these values are both large,
then we have found places where Algorithm A succeeded while Algorithm B failed and vice
versa. This is valuable to know, as we can devise a new algorithm that uses both in parallel
and takes the value of Algorithm B where Algorithm A fails, and vice versa — this should
yield an overall improvement in accuracy. This is actually a significant statement with regard
to the design of vision systems: rather than combining the results from algorithms in the
rather ad hoc manner that usually takes place, McNemar’s test provides a principled approach
that tells us not only how to do it but also when it is appropriate to do so on the basis of
technology evaluation — in other words, technology evaluation needs to be an inherent part
of the algorithm design process.

5.3 Comparing Several Algorithms

Some caution is required when comparing more than two algorithms. McNemar’s test works
on pairs of algorithms, so one ends up making a number of pairwise comparisons. We have
already noted that it is possible for a comparison to yield a significant result purely by chance,
so when we perform several such comparisons, the probability of this happening increases.

2This corresponds to two standard deviations from the mean of a Gaussian distribution.
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More precisely, if the probability of a result arising by chance in any single comparison is
α, then the probability of not making such an error is 1 − α. If two tests are independent,
the probability of observing these two events together is the product of the individual events,
so the probability of not making an error in N comparisons is (1 − α)N . If we take α =
0.05 (the “one in twenty” rate mentioned earlier) with N = 10 algorithms, we obtain (1 −
0.05)10 = 0.599 — which means that the probability of making an error is about 0.4, definitely
significant.

If we want the result of our entire comparison process to be have a confidence level of
β = 0.05, then we must reduce the confidence level on each individual comparison by a factor
that depends on N , the number of tests. Now

β = 1− (1− α)N (10)

so we must set
α = 1 = (1− β)

1
N (11)

This is known as a S̆idàk correction. Because it involves a fractional power, it used to be
difficult to calculate so a number of authors came up with the approximation

α =
β

N
(12)

which is most commonly called a Bonferroni correction, though both Boole and Dunn arrived
at it independently. Technically, this is a first-order Taylor expansion of the S̆idàk correction.
Comparing the two, the Bonferroni correction is always more conservative than the (more
correct) S̆idàk one, so the latter is to be preferred.

The consequence of this is that, as you include more algorithms in a comparison, you must
be more stringent when deciding that a result is significant. The authors have yet to see this
done in a vision paper (indeed, they have yet to see the use of McNemar’s test), though they
are aware of people in industry who have used it when evaluating vision systems.

6 Determining Robustness to Noise

It was mentioned in Section 1 that one of the problems with vision algorithms is their fragility
to unexpected variations in the input. One aspect of variation — by no means the only one
— is noise. As we know, light consists of photons; if one goes through the maths, the inter-
arrival time of photons in conventional cameras from incoherent light sources (e.g., sunlight
or artificial light sources but not laser, ultrasound or radar) is Poisson-distributed and, for
reasonable numbers of photons, this can be approximated as Gaussian. (The way in which
the photons are captured and processed by camera systems affect the distribution, so Gaussian
is not always a good assumption even though everyone appears to use it in practice.)

To determine how robust an algorithm is to noise, one simply takes a typical input image
and generates (say) 100 versions of that image with added Gaussian-distributed noise of zero
mean and known standard deviation. The images are then fed to the algorithm under test,
one by one. If the algorithm produces a class label, that label should not change; and if the
algorithm produces a measurement (e.g., the location of a corner), plotting a histogram of the
error in that measurement will show how the algorithm is affected by noise. If the input noise
distribution is Gaussian, the distribution of the measurement error should also be Gaussian —
if it is not, there is a problem with the algorithm — and the standard deviation of the errors
in the output gives an idea of how well the algorithm withstands noise.
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7 So Is This The Whole Story?

No. No matter how well something is tested in the research lab, even on real-world images
captured in a variety of conditions, the moment you try out your system ‘in the wild,’ there
will be a host of problems you hadn’t thought of — shadows, changing illumination, uneven
ground, people getting in the way, no handy mains power and a million other things. Most of
these will affect the performance of a vision system. The most effective systems at the moment
work in constrained environments, where for example the lighting is static and controllable,
but increasingly researchers are trying to make their systems work with fewer constraints.
This is laudable and will lead to vision systems that are much more reliable, though it is a
long, slow process. I encourage you to become involved in this.
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