
Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

EPSRC Vision Summer School

Vision Algorithmics

Adrian F. Clark
〈alien@essex.ac.uk〉

VASE Laboratory, Comp Sci & Elec Eng
University of Essex

http://esewww.essex.ac.uk.~alien/
mailto:alien@essex.ac.uk
http://vase.essex.ac.uk/
http://www.essex.ac.uk/csee/
http://www.essex.ac.uk/

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Introduction

Roughly 50% of your PhD time will be spent on practical
work
As vision software development and evaluation will
consume so much time, it is in your interest to become
proficient at it
Vision software is fragile and needs to be made more
robust
My belief is that it’s because too many researchers naïvely
believe vision software development just involves
“programming the maths”

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Introduction

Roughly 50% of your PhD time will be spent on practical
work
As vision software development and evaluation will
consume so much time, it is in your interest to become
proficient at it
Vision software is fragile and needs to be made more
robust
My belief is that it’s because too many researchers naïvely
believe vision software development just involves
“programming the maths”

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Introduction

Roughly 50% of your PhD time will be spent on practical
work
As vision software development and evaluation will
consume so much time, it is in your interest to become
proficient at it
Vision software is fragile and needs to be made more
robust
My belief is that it’s because too many researchers naïvely
believe vision software development just involves
“programming the maths”

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Overview of the session

1 What can go wrong
Failure of programming model
Programming versus theory
Numerical issues
The right algorithm in the right place

2 Vision packages
3 Massaging program outputs
4 Concluding remarks

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

What can go wrong

I’ll concentrate on four major causes of problems when
programming vision software:

Failure of programming model
Programming versus theory
Numerical issues
The right algorithm in the right place

Each of these will be illustrated by simple examples.

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

What can go wrong

I’ll concentrate on four major causes of problems when
programming vision software:

Failure of programming model
Programming versus theory
Numerical issues
The right algorithm in the right place

Each of these will be illustrated by simple examples.

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Programming models

Look at the following C code and try to spot what’s good and
bad about it.

typedef unsigned char byte;

void sub_ims (byte **i1, byte **i2,
int ny, int nx)

{
int y, x;
for (y = 0; y < ny; y++)

for (x = 0; x < nx; x++)
i1[y][x] = i1[y][x] - i2[y][x];

}

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Good features

The code is easy to read and (hopefully) understand.
The code accesses the pixels in the correct order: in C, 2D
arrays are ‘arrays of arrays,’ stored so that the last
subscript addresses adjacent memory locations.
Incidentally, it is commonly reported that this
double-subscript approach is dreadfully inefficient as it
involves multiplications to subscript into the array —
complete bunkum!

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Good features

The code is easy to read and (hopefully) understand.
The code accesses the pixels in the correct order: in C, 2D
arrays are ‘arrays of arrays,’ stored so that the last
subscript addresses adjacent memory locations.
Incidentally, it is commonly reported that this
double-subscript approach is dreadfully inefficient as it
involves multiplications to subscript into the array —
complete bunkum!

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Good features

The code is easy to read and (hopefully) understand.
The code accesses the pixels in the correct order: in C, 2D
arrays are ‘arrays of arrays,’ stored so that the last
subscript addresses adjacent memory locations.
Incidentally, it is commonly reported that this
double-subscript approach is dreadfully inefficient as it
involves multiplications to subscript into the array —
complete bunkum!

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Bad features

The arrays are declared as unsigned char, so pixel
values must lie in the range 0–255
Hence, the code is constrained to work with 8-bit imagery;
it cannot be used with 10-bit scanner images, 14-bit
remotely-sensed data etc.
The code fails when i2[y][x] > i1[y][x]

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Bad features

The arrays are declared as unsigned char, so pixel
values must lie in the range 0–255
Hence, the code is constrained to work with 8-bit imagery;
it cannot be used with 10-bit scanner images, 14-bit
remotely-sensed data etc.
The code fails when i2[y][x] > i1[y][x]

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Underflow and overflow

Most run-time systems don’t generate an exception for
integer underflow or overflow, so you don’t know when this
kind of thing happens
The problem due to subtraction is not unique: addition and
multiplication are just as likely to cause problems
Division is even worse as integer division discards the
fractional part; so you have to do things like

i1[y][x] = (i1[y][x] + 255) / i2[y][x];

for 8-bit data

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Underflow and overflow

Most run-time systems don’t generate an exception for
integer underflow or overflow, so you don’t know when this
kind of thing happens
The problem due to subtraction is not unique: addition and
multiplication are just as likely to cause problems
Division is even worse as integer division discards the
fractional part; so you have to do things like

i1[y][x] = (i1[y][x] + 255) / i2[y][x];

for 8-bit data

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Underflow and overflow

Most run-time systems don’t generate an exception for
integer underflow or overflow, so you don’t know when this
kind of thing happens
The problem due to subtraction is not unique: addition and
multiplication are just as likely to cause problems
Division is even worse as integer division discards the
fractional part; so you have to do things like

i1[y][x] = (i1[y][x] + 255) / i2[y][x];

for 8-bit data

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Extended representations

The obvious solution to these problems is to use
something with a longer representation than unsigned
char, such as a 32-bit integer
In fact, using a floating-point representation is attractive as
it provides a greater dynamic range than integers (needed
for Fourier-space processing, for example) and doesn’t
have the performance penalty it had a decade or so ago

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Memory consumption

The most fundamental decision built into the code is that
the entire image can fit into memory; changing that would
involve totally re-writing the code
Is this important in these days where PCs have > 1 Gb
RAM?
It is if you want your software to be able to run on a
handheld or a ’phone, or if it has to be used in an
embedded system, or if it is astonishingly large

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Memory consumption

The most fundamental decision built into the code is that
the entire image can fit into memory; changing that would
involve totally re-writing the code
Is this important in these days where PCs have > 1 Gb
RAM?
It is if you want your software to be able to run on a
handheld or a ’phone, or if it has to be used in an
embedded system, or if it is astonishingly large

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Line-by-line access

The traditional way of avoiding having to store the entire image
in memory is to employ line-by-line access:

for (y = 0; y < ny; y++) {
buf = getline (y);
for (x = 0; x < nx; x++)

...operate on buf[x]...
putline (y, buf);

}

This doesn’t actually have to involve line-by-line access to a
disk file as getline can return a pointer to the line of an
image held in memory.

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Programming versus theory

Think of programming a simple 3× 3 blur. What happens at
the edges?

don’t process the edge region
reduce the size of the mask as one approaches the edge
imagine the image is reflected along its first row and
column and program the edge code accordingly
imagine the image wraps around cyclically

Only the last of these agrees with Fourier theory, which is the
basis of convolution.

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Programming versus theory

Think of programming a simple 3× 3 blur. What happens at
the edges?

don’t process the edge region
reduce the size of the mask as one approaches the edge
imagine the image is reflected along its first row and
column and program the edge code accordingly
imagine the image wraps around cyclically

Only the last of these agrees with Fourier theory, which is the
basis of convolution.

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Programming versus theory

Think of programming a simple 3× 3 blur. What happens at
the edges?

don’t process the edge region
reduce the size of the mask as one approaches the edge
imagine the image is reflected along its first row and
column and program the edge code accordingly
imagine the image wraps around cyclically

Only the last of these agrees with Fourier theory, which is the
basis of convolution.

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Systematic errors

Let’s consider the corner detector due to Harris & Stephens.

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

The reason the corners are in the wrong place is that there is a
systematic error in the algorithm. With a little care, you can
overcome this.

What about the OpenCV implementation of Harris & Stephens?
Haven’t you tested it?

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Numerical issues

A floating-point number is stored as m × 2e

Floating-point arithmetic is significantly less accurate
than a pocket calculator!
In order to add or subtract two numbers, the representation
of the smaller number must be changed so that it has the
same exponent as the larger, and this involves shifting
binary digits in the mantissa
If the numbers differ by about 107, all the digits of the
mantissa are shifted out and the lower number effectively
becomes zero

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Solution of a quadratic

The task of solving a quadratic equation crops up surprisingly
frequently. The solution to

ax2 + bx + c = 0

is something almost everyone learns at school:

x =
−b ±

√
b2 − 4ac

2a

When the discriminant, b2 − 4ac, involves values that make
b2 � 4ac, the nature of floating-point subtraction can make
4ac → 0 relative to b2 so that the discriminant becomes
±b. . . and this means that the lower solutions is −b + b = 0.

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Solution of a quadratic

The task of solving a quadratic equation crops up surprisingly
frequently. The solution to

ax2 + bx + c = 0

is something almost everyone learns at school:

x =
−b ±

√
b2 − 4ac

2a

When the discriminant, b2 − 4ac, involves values that make
b2 � 4ac, the nature of floating-point subtraction can make
4ac → 0 relative to b2 so that the discriminant becomes
±b. . . and this means that the lower solutions is −b + b = 0.

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Numerically-stable solution

If we first calculate

q = −1
2

(
b + sgn(b)

√
b2 − 4ac

)
then the two solutions to the quadratic are given by

x1 = c/q

and
x2 = q/a

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Calculating the standard deviation

The definition of the s.d. is straightforward enough

1
N

N∑
i=1

(xi − x̄)2

If we program this equation to calculate the s.d., the code
has to make two passes through the image
We can simplify the equation to produce

∑
x2 − (

∑
x)2

N

which requires only one pass through the image

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

float v, var, sum = sum2 = 0.0;
int y, x;

for (y = 0; y < ny; y++) {
for (x = 0; x < nx; x++) {

v = im[y][x];
sum = sum + v;
sum2 = sum2 + v * v;

}
}
v = nx * ny;
var = (sum2 - sum * sum/v) / v;
if (var <= 0.0) return 0.0;
return sqrt(var);

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

The right algorithm in the right place

It is important to choose an efficient algorithm
But don’t go overboard: only do so where it makes sense

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

The fast Fourier transform

The discrete Fourier transform (DFT) is naturally derived
as a matrix multiplication; this takes O(N2) multiplications
for an N-point transform.
The FFT algorithm makes use of symmetry properties of
the transform matrix to reduce the multiplication count to
O(N log2 N).
For a 256× 256 image, this gives a saving of about 1,000
times!

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Sorting for a median filter

However, you mustn’t use fast algorithms blindly. For median
filtering, for example, you need to determine the median of
many sets of numbers.

Textbooks show the ‘quicksort’ algorithm to be fastest; but
its worst-case performance is poorer than many other sort
algorithms.
Quicksort is normally implemented recursively: for sorting
9 or 25 numbers, the procedure-call overhead probably
dominates. In fact, Shell’s sorting algorithm is probably
better.
However, there are median-finding algorithms that do not
involve sorting; one of these is probably faster!

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Sorting for a median filter

However, you mustn’t use fast algorithms blindly. For median
filtering, for example, you need to determine the median of
many sets of numbers.

Textbooks show the ‘quicksort’ algorithm to be fastest; but
its worst-case performance is poorer than many other sort
algorithms.
Quicksort is normally implemented recursively: for sorting
9 or 25 numbers, the procedure-call overhead probably
dominates. In fact, Shell’s sorting algorithm is probably
better.
However, there are median-finding algorithms that do not
involve sorting; one of these is probably faster!

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Programming issues: a summary

You’re probably wondering whether it is ever possible to
produce vision software that is efficient and works reliably.
Of course it is — but you cannot tell without looking at the
source code.
Hence, many vision researchers have a strong preference
for open-source software.

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Programming issues: a summary

You’re probably wondering whether it is ever possible to
produce vision software that is efficient and works reliably.
Of course it is — but you cannot tell without looking at the
source code.
Hence, many vision researchers have a strong preference
for open-source software.

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Vision software

Matlab: good if you want to use, rather than develop,
vision algorithms

OpenCV: looks as though it might become the normal way
to disseminate vision algorithms — but it’s
intended for speed rather than accuracy

Tina: a C library that makes a conscious effort to
provide statistically-robust techniques, though not
the easiest to use

EVE: 〈Advertisement〉 A pure Python (numpy) set of
some important image processing and vision
techniques

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Vision software

Matlab: good if you want to use, rather than develop,
vision algorithms

OpenCV: looks as though it might become the normal way
to disseminate vision algorithms — but it’s
intended for speed rather than accuracy

Tina: a C library that makes a conscious effort to
provide statistically-robust techniques, though not
the easiest to use

EVE: 〈Advertisement〉 A pure Python (numpy) set of
some important image processing and vision
techniques

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Useful software

Numerical methods: NAg, BLAS, [numerical recipes]
Image format conversion: NETPBM and ImageMagick
Statistical software: R
Neural networks: netlab
Genetic algorithms: genesis, ECJ

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Massaging program outputs

At some point, you will have to take the output from a
program and manipulate it into some other form
learn a scripting language such as Perl, Python, Ruby or
Tcl
don’t build a graphical user interface (GUI) into your
program

Scripting languages are designed to be used as software ‘glue’
between programs; they provide facilities for processing text,
including regular expressions.

http://www.perl.com/
http://www.python.org/
http://www.ruby-lang.org/en/
http://www.tcl.tk/

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Introduction Programming models Programming v theory Numerical issues Algorithm choice Software

Concluding remarks

Do not believe results, either those from your own
software or anyone else’s, without checking
Don’t be scared to spend a few hours getting a ‘feel’ for the
nature of your data
Check out your algorithm by varying the input data: ensure
it does what you expect, or find out why your expectations
are wrong
See if you can find out how the performance of your
algorithm depends on features of the input and use that as
a way of improving it — not performance evaluation but
performance characterisation

	Introduction
	Programming models
	Programming v theory
	Numerical issues
	Algorithm choice
	Software

