
Computer Vision — A Concise Summary

Contents
1 Fundamentals 1
2 Convolution 1
3 Low-level vision 2
4 Intermediate-level vision 2
5 Humans 3
6 Stereo 4
7 Machine learning 4
8 Evaluating vision systems 6

1 Fundamentals

An image is a representation the projection of the
world around us onto a 2D plane, typically captured
by a camera. Some ‘cameras’ can capture in
wavebands other than the visible (400–700 nm), such
as the infra-red or X-ray, or even measure information
such as depth (as in the Kinect). A single-channel
image is stored as follows with pixel values normally
as unsigned bytes.

x increasing→
0 1 2 3 4 5 6 7 8

←
y

in
cr

ea
si

ng

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 255 0 0 0 0
2 0 0 0 255 255 255 0 0 0
3 0 0 255 255 255 255 255 0 0
4 0 0 0 0 255 0 0 0 0
5 0 0 0 0 255 0 0 0 0
6 0 0 0 0 255 0 0 0 0
7 0 0 0 0 255 0 0 0 0
8 0 0 0 0 255 0 0 0 0
9 0 0 0 0 0 0 0 0 0

ÉColour images contain red, green and blue values for
every pixel, so are indexed by row, column and
colour channel: im[y,x,c]. OpenCV stores colour
images as blue, green and red using a representation
compatible with numpy:

>>> print (len (mono_im.shape))
2
>>> print (len (colour_im.shape))
3

It is common to process colour images in HSV space:

hsvim = cv2.cvtColor (im, cv2.COLOR_BGR2HSV)

ÉA single sum for calculating the mean

P̄ =
1
N

N
∑

i=1

Pi

usually corresponds to loops over rows, columns and
channels:

def mean (im):
"Return the mean of the image im."
ny, nx, nc = im.shape
total = 0
for y in range (0, ny):

for x in range (0, nx):
for c in range (0, nc):

total += im[y,x,c]
return total / ny / nx / nc

The standard deviation of an image is

σ2 =
1
N

∑

i

�

Pi − P̄
�2

=
1
N

�

∑

P2
i −

1
N

�∑

Pi

�2
�

É Images using only a small range of grey levels can be
contrast-stretched by scaling the lowest value Pl to Vl
and the highest Ph to Vh, so each pixel Pi becomes

(Vh − Vl)
Pi − Pl

Ph − Pl
+ Vl

Normally Vl = 0 and Vh = 255.

2 Convolution

Note that you cannot compute a convolution in place.
Common masks include:

1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 -8 1
1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1
3x3 blur 5x5 blur Laplacian

1

ÉRather than adding or taking the mean at each pixel,
one can compute the median, the minimum or
maximum. When used on binarized images, the latter
two are the basis of morphology (shrink and expand),
with other operations based on them such as
including open (shrink then expand to remove small
objects) and close (expand then shrink to fill in small
gaps)

ÉMatched filtering involves designing the vales of the
mask to emphasize particular features in an image.

3 Low-level vision

This typically starts with a histogram:

Histograms are most useful for helping decide where
to set a threshold τ to segment images into
foreground and background — though Otsu’s method
can set τ automatically when the numbers of
foreground and background pixels are roughly the
same. The OpenCV calls for ordinary and Otsu
thresholding are

t, bim = cv2.threshold (im, thresh, 255,
cv2.THRESH_BINARY)

t, bim = cv2.threshold (im, thresh, 255,
cv2.THRESH_BINARY+cv2.THRESH_OTSU)

ÉWith binarized images from thresholding, it is
common to label regions, so that:

0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 0 1 1
1 1 1 0 0 1 0 0 1 1
0 0 0 0 0 1 1 0 0 0
1 1 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 0
0 1 1 1 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0

goes to:

0 0 0 0 0 0 0 0 0 0
0 1 1 0 2 2 0 0 3 3
1 1 1 0 0 2 0 0 3 3
0 0 0 0 0 2 2 0 0 0
4 4 0 0 0 0 2 2 0 0
0 0 0 0 0 0 0 0 0 0
0 5 0 5 0 6 0 0 0 0
0 5 5 5 0 0 7 7 7 7
0 0 0 0 0 0 0 7 7 0
0 0 0 0 0 0 0 0 0 0

In OpenCV, this is done when finding contours:

cv2.findContours (bim, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

ÉSegmenting by thresholding or colour often yield
spurious regions or small gaps within regions. These
can often be deleted on the basis of size or filled in
with morphological operations.

ÉHaving identified and labelled regions (or found
contours in OpenCV), one way to identify or
distinguish them is by region properties: perimeter,
area, moments, convexity, bounding box, aspect ratio,
rectangularity, circularity, number of holes, and so on.

4 Intermediate-level vision

Canny’s edge detector is based around:

• it should respond only to edges
• all edges should be found
• edges should be in the correct places
• multiple edges should not be found where only

one exists

Its stages are:

1. Convolve the image with a Gaussian mask
2. Find differences in horizontal and vertical

directions
3. Find the magnitudes and directions of the edge

gradients
4. Perform non-maximum suppression to thin edges
5. Perform hysteresis thresholding to join edge

segments.

2

ÉAll edge detectors suffer from the aperture problem:
you cannot tell where you are on a line that fills the
field of view. This is not the case for corners.

ÉMoravec’s Corner detection is based around the idea
that a region around a corner differs significantly
from regions displaced from it in any direction.

C

A

B

We compute for pixel values P(x , y) and mask values
W (u, v):

E(x , y) =
∑

u,v

W (u, v) (P(x + u, y + v)− P(u, v))2 .

and consider shifts of (1,0), (1,1), (0,1) and (−1,1),
and look for local maxima in min(E) above some
threshold value to identify corners.

ÉHarris & Stephens improve on Moravec by
considering the direction of the corner. Other
well-known corner detectors include FAST, based
around the idea that at a corner more than half the
pixels will be dark or light.

ÉThe line Hough transform fits a straight line to pixels
that may lie on an edge using an ‘accumulator’
indexed by gradient and intercept. Each point
produces a line in the accumulator

It is common to use a parametric representation for
lines instead of y = ax + b.

x

y
y = ax + b

r

θ

Now x cosθ + y sinθ = r so we have to draw sine
waves in the accumulator array instead of straight
lines. We look for peaks in it to identify lines. There
are versions of the Hough transform for circles and
other shapes.

ÉTo describe the region around a corner, one can use
BRIEF. For a patch of size S × S encompassing a
corner in the image P, some N locations (x i , yi) in
the patch are chosen and a series of bitwise ‘tests’ τ
are made for different combinations of i and j:

τ=

¨

1 if P(x i , yi)< P(x j , y j)
0 otherwise

The resulting binary numbers are combined into a
string of bits, the BRIEF descriptor. Comparing these
descriptors is done using the Hamming distance.

ÉBRIEF is affected badly by scale or rotation changes,
so people use closely-related ORB, which positions
the corner in the centre of the patch and computes
the centroid. The direction of the line from this
corner to the centroid gives the orientation.

ÉSIFT is arguably the best feature matcher, working
when there are scale and orientation changes. To find
matches between (say) objects in successive frames
of a video, first calculate the SIFT features for each
frame. Then, for each feature of the first frame in
turn, compare it with all features in the second frame
and choose the one with the lowest score as being the
best match. SIFT is quite slow, though GPU versions
of it are now available. The features tend to lie
within regions, not at (say) corners.

5 Humans

The best-known way to find faces is via the
Viola-Jones algorithm, based around Haar features
because they can be computed quickly (see below).

To train, images were reduced to 24× 24 pixels and
all 162,336 possible features computed. A learning
algorithm, Adaboost, finds which combination of
features minimizes the number of mis-classifications
of face and non-face regions. Each feature
individually may not perform well but the weak
classifiers combine to produce a strong classifier.
Their face detection system has 38 stages, the first
five of which involve only 1, 10, 25, 25 and 50
features; the total number of features required is
about 6,000.

ÉHaar features can be calculated in constant time
irrespective of their size by using integral images,
where each pixel contains the sum of all image pixels
above and to the left of it.

É In OpenCV, we load a “cascade” of Haar features and
apply it to the image to determine all the faces, which
we can then iterate over.

3

casc = c2.CascadeClassifier ("...")
faces = casc.detectMultiScale (im,

scaleFactor=1.1, minNeighbors=5)
for (x, y, w, h) in faces:

cv2.rectangle (im, (x,y), (x+w,y+h),
(255,0,0), 2)

There are cascades for eyes, mouths and other types
of image feature.

ÉHaving found a face, it can be normalized so that
(say) the eyes are always located in the same place
on an image.

É Face recognition can be done using any of ML
algorithm described in section 7.

ÉHOG, the histogram of oriented gradients, describes
local regions by partitioning the image into cells and,
for each one, computing a histogram of gradient
directions using the masks

0 0 0
−1 0 1
0 0 0

0 −1 0
0 0 0
0 1 0

The outputs are used to calculate edge direction as
for Canny, and the resulting angle is used to
increment one of about 10 bins, usually by the
corresponding gradient magnitude. HOG has proven
to be useful for detecting pedestrians and people
running.

6 Stereo

A camera works roughly as follows:

lens

Z

z

x

X

θ

θ
Ο

back focal plane

so that
tan

x
z
= tan

X
Z

.

ÉTo determine the distance Z to an object of unknown
size, we use a pair of identical cameras arranged with
their optical axes parallel.

X

B

f

Z = 0

x

x

L

R

f (X, Y, Z)

Z

from which we can obtain the expression

Z =
f B

xL − xR

where f is the focal length, B the separation of the
optical axes and xL and xR the equivalent positions in
the left and right cameras. All measurements have to
be in the same units, of course.

ÉTo propagate uncertainty when calculating distance
(or anything else), the rules are:

• when adding or subtracting values, add the
uncertainties

• when multiplying or dividing values, add the
fractional uncertainties

ÉWhen many images are available, structure from
motion can be used to build a complete 3D
reconstruction. Doing this requires a good image
feature matcher such as SIFT.

ÉVisual SLAM is based around the same principles as
structure from motion but works in real time by
replacing the slow, accurate SIFT with a video rate
but less accurate matcher such as Harris&Stephens
with ORB.

7 Machine learning

ML techniques fall into two broad categories:

Unsupervised: try to partition data into classes with
no knowledge of the underlying problem: e.g.,
k-means

Supervised: use training examples to ‘learn’ how a
set of data is partitioned into classes; e.g.,
support vector machine (SVM), multi-layer
perceptron (MLP), random forest (RF), genetic
programming (GP), convolutional neural
network (CNN)

As supervised learners use more data, they usually
perform better — though the cost of producing the
‘ground truth’ classifications can be high. Note that

4

one can use parameters extracted from imagery (a
feature vector) rather then the images themselves as
training data.

É k-means alternates between:

• assigning data points to clusters based on the
current centroids; and

• choosing centroids (cluster centres) based on the
current assignment of data points to clusters.

Note that the algorithm has to be told the number of
clusters to look for. It doesn’t always converge to the
best result, so multiple runs can ‘vote’ for a good
solution.

É SVM works out the best (maximum margin)
hyperplane between classes. If there is not a linear
(planar) separation between classes, it doesn’t work,
though scaling parts of the data before SVM and
unscaling them afterwards sometimes helps.

SVM is deterministic (unlike all the algorithms that
follow here), so is pretty fast. Care needs to be taken
with the parameter settings for it to work well.

ÉGenetic programming involves generating a random
population of programs, evaluating how well they
work on a problem using a cost function, then
“mating” the better-performing ones in a way that
mimics sexual reproduction to produce “children.”
This is repeated a number of times. For computer
vision, one can define operators that perform useful
tasks: convolution, thresholding, etc. Perhaps
surprisingly, this can work very well on real-world
problems.

ÉThe MLP comprises a number of fully-connected
layers of “neurons,” each of which is simple. The data
are presented at the input layer, which pass them to
hidden layers, and they in turn pass them to a output
layer. Recent years have seen computational
performance increase to the point that a dozen or
more hidden layers are not uncommon.

The connections between neurons each has a weight
wi which is determined during training.

x1

x2

xN

w1

w2

wN

∑ activation
function, f

y

y = f

� N
∑

i=1

x iwi

�

where x i are the inputs to a neuron and wi the
corresponding connection strengths. Popular choices
for f (·) are tanh, Gaussian, etc.

Training involves setting initial values for the weights
and adapting them through a series of epochs, often
using the back-propagation algorithm. If there are too
few training examples, the network often experiences
over-training in which it recognizes only the training
patterns and not similar ones. Hence, it is common to
perform data augmentation: shifting, rotation and
adding noise to existing training examples. Training
is quite slow but execution is fast.

ÉCNNs, specific to images, are based around learning
custom convolution layers. They comprise a number
of types of layer:

INPUT: receives the raw pixels of the data
CONV: computes the output of neurons that are

connected to local regions of the input — in
other words, it performs a convolution with
coefficients that are learned from the data

RELU: applies an element-wise activation function,
which may be as simple as max(0,x) to
threshold at zero

POOL: down-samples or averages regions of its
input, so that the overall width and height of the
network is reduced

FC: the final layer is usually fully-connected, just as
in an MLP; it computes the class scores and
hence returns the calculated class of the pattern
presented at the network’s input

5

CONV and FC layers transform the data as a function
of their inputs according to the weights and biases of
the neurons, which means they must be trained.
Conversely, RELU and POOL layers implement a fixed
function and do not require training. CNNs can have
tens or even hundreds of layers. Popular ones include
LeNet, AlexNet, GoogLeNet, VGGNet and ResNet.

ÉCNNs can take literally weeks to train on commodity
hardware, so it is increasingly common to use one
pre-trained on (say) the huge ImageNet database and
train only an additional FC layer. This is known as
transfer learning.

ÉVisually identical inputs to a deep network can yield
totally different classes as output, and with high
confidence values. This has been exploited in
Generative Adversarial Networks (GANs), in which
two neural networks are pitted against each other. A
generator network produces input to a discriminator
one; both are trained concurrently, with the generator
trying to produce examples that the discriminator
cannot distinguish from real images, while the
discriminator tries to spot the generator’s fakes.

ÉMost ML techniques are “black boxes,” meaning that
a human cannot understand how they work in detail;
this makes them less desirable for areas such as
medicine and aircraft. Exceptions are SVM and GP,
which are interpretable.

8 Evaluating vision systems

Evaluation requires “ground truth” imagery for which
the answer is known, often assessed by experts in the
problem domain. Data used for testing must be
different from those used for training. Each
individual test has four possible outcomes:

true positive (TP): the feature was found and given
the correct label

false positive (FP): the feature was found but given
an incorrect label

false negative (FN): a feature that should have been
found was not

true negative (TN): a feature was not present and
no feature was found

There is always a trade-off between true positive and
false positive detections. We can derive some further
measures from these:

accuracy=
TP+ TN

N
precision=

TP
TP+ FP

sensitivity= recall=
TP

TP+ FN
specificity=

TN
FP+ TN

where N is the number of tests.

É If some parameter that governs how the system
operates can be adjusted, it is possible to draw a ROC
curve.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

false positive rate

tr
ue

po
si

ti
ve

ra
te

very good
good
worthless

Other curves are often drawn, e.g. precision–recall.

ÉSome people use the area under the ROC curve to
assess which of several algorithms is best. This is
inappropriate for computer vision because one
operates a vision system at one specific set of
parameter settings; and it fails to take into account
the number of tests. There is a statistical test,
Mcnemar’s test, which is better. One must run
algorithms on the same data and record the outcome
of each individual test to build up the table

A failed A succeeded

B failed N f f Ns f
B succeeded N f s Nss

where Nss is the number of cases where both
algorithms succeeded, etc. Then one calculates the
statistic

Z2 =
(|Ns f − N f s| − 1)2

(Ns f + N f s)

which is interpreted using the following table

Z value two-tailed one-tailed
confidence confidence

1.646 90% 95.0%
1.960 95% 97.5%
2.326 98% 99.0%
2.576 99% 99.5%

For example, if Z ≥ 1.96, the probability that the
algorithms’ performance could have differed
(two-tailed test) due to an unfortunate set of data is
5% or one in twenty.

6

