ADRIAN F. CLARK

COMPUTER VISION

COMPUTER SCIENCE AND ELECTRONIC ENGINEERING
UNIVERSITY OF ESSEX

+ e
| o ""‘""I‘""/////////////////\
| o N i
| e o N |
| i ' N N
+ 1" N e
| i R
| s T TTXX R A NN
| e T XOO00GGEEE000K [T [[R R
| v T T XOO0GGG00GOGGCOOOOONXX! [/ N NNy
+ v T T XXOGOOGCOOMRKIIHIHKICOOGCOORGGNXX " S T+
| v CHLLELEEETE T e
| " CHLEEEEE LT E e E iy
| ' OOOOKXX THE LT
| "1 X000 | UL
+ X000 | 1 VU T T+
| 1 X0 11 R R NN NN RN RN NN
| " 1 XXXKXX | R N NN NN RN
| ’ ' R NN R NN RN NN
| o g R A RN N RN NN RN
+ i S LT+
[L LT |
[NN A PR N N AR N R N R NN RN NN RN
(RN NN NN NN NN NN AR N D N R N A N NN RN NN RN
[ITEEEE L L F L E L r e X/ R N N NN RN NN RN
LT i irde o ' LT+
(R RN NN NN RN NN NN NN " ' R NN NN
|///l/I////l/I////l/I/I//l/l/l//l/l/l//// TIXTTTT HHLTELEETE L i
[rirre /l/l/l////l/l// i TEXE T XR00OGHK CHLLELEETTEEE |
(RRRRRRRRNNRRN ' TIX 1) RN NN NN
LI " " XXt " CCILLLETET T T+
1 X000 I TETEFTEEF T T LT e ! R N R NN RN N NN NN
//I////)Q N R R N NN RN N NN

ey 1 XOOOORKKKXHKHIOOORHHKIIXIOOOKKKKX Ryl

e 11 XOOOORKRKKHKHIOOOHKKKHIOOONKHK/ *

S T

I

|

|

+ AR " 11 XRROOIOOKOHGHHHK! TR T+
| t I R N NN R RN NN NN
| i X1 LT |
| It X1 00000 1+ 2 [LT |
| S R
+ P 111X LIIXLTT T+
| XH0000000G0GGG00GGG0GO * * 117+ [111 111X " 111 11X 1 XX 110004 X0 X0 11111111117 |

| X000 [[11T TTTITTTTXXXI T 1 11T XXKHIRGOOBOOGOCOSFNS [111111111 T XXX | XXX XK LT
| 20000CRRGORGCOICOXX ™ 1™ 1 11T XX T T XXX T 11T T XXOGHHKHOOGGOGOOOOHKNS [1 1111111 XX 1 XXX 111X XXX 11T

| 20000CRGOOCXN ™ [1™ I TTTITTIXTTTTETTT]
HXCOCOOCOGOXX ™ * [T TTITTTIXITTT X !

11 X000 X 11 XXX | XIXI T 1XXET TR0 11T

TUULITTTEETTTEEXE L XEXXKE

11K XXX 111X XK OO 1T+

| 200G/
TELTELEETEEEEEE 2 EE L EEEEXE T XX XK X

IXXTEXITTETTTTEXEXE XK 11T]|

XXX XL EXETTTTTTET X T XXX [1T

SUL LTI XK T XXX X XOORKKXXXKT XK | 11 XHKRHKHXIOOOKKKNIIOOOXXNXNKS XI 1 XXX 111 X0 XI LT T T T XIE] XXX 11111 |
SULTITTTTTT X LT XXX T XK XXXX XOOKI 11X | * ///xxxxxxxxxx/xxxxxxxxxx)q///)«)«//////Xx//////lxx/xxxxxxxx)«l/!////\

TR XX] TIXKL T

TILEXULTEXELTXT LT ETTELT XSO0 1 1111]]+

‘I""//I//////I/xx//x//x////x/////xx/xxxxx/xxx/////Ixxxxxxx//xxxxxxxx//x/////////xx/xx/x//////x//!//xxxxxxxx/l/!////\
LT ITTTEEXETETTTEXE XK 11 XK T 1 X XXRK XE XXX 11 1 XK 1 OGO [T 11T XL T XKL T T T XK 00K 11|
CULITTTEEX XL XEXE XXX XK XXX XXX TR 1 XOO0KXKT 11T XEXEXXXK LT OO0 11|
LTI EEEXE LXK XE XK XX T XX T XE XK 11 XK | X0 | 11X T 11T XK 11T X T XXX XK 1111 1|

L T T XXE XK X XOOGK | X 11X T XK T X XK XX 1 XK 1T TR T TEXEE XK T LT T XXX XE X0 11T |
TLET 00K XK X X1 XXX XXX X000 T THETXEXETTTEXEXXE T TETETEXET XD T 1T |

TTTTTTTXXGOGXOOGGONNS 11111111 XE 111 XK1 XK XK XX T T TTT LT TEXET T XK T T TTXET T X T T X0 11|
TR T X000 XI 11 XX 111X 11X X1 TS T T TTEEXE LT XGOS T 1T HTTT TR X1 X000 11|

PHLTEXE T XOO0GKKOGOOGHXXS XI XX 111 XK1 11X TXXE XT30S 111111 XEXXE 1 XK | 11T 1T T T XK XK 1111+
NG 1 XEXOOXXI 1 XXE X XG0 1111 X111 XK T 1 XK 11T 1T T 1XXE XK XE XXX 11T |

AN NN NNR NN

|
|
|
+
|
|
|
|
+ S LI TX00000K] 11111 XXX XITXE XXX 000K 1 X 11X T TXOO XXX 1111000000006 111111+
|
|
|
|
+
|
|

THTEXT XX] TELTTTEETTEXET T YOOGS 1111 |

! DOOGGOHHHKX
P LT EXE LT T OOOQKKE] 11T XOOOKKRKKIKXOOOGKNNN /111 XXXXXXI XOOKKKKKIXOOOXN 1 11111111 X1 1 X0 111 XXXXXXXXI 1111 |

| X000 /LTI TEEXXEXI AL TEEE T EEEE T LT XXX

THETETEEXET T T X X000 1111

AXHKHKKOKXK | /* (1L LTI LT

TIETTETTTEXI X] X000 1111+

1 360060G0CC " /[/11T LTI]

nn 1111

| X000KKIXX " L LLIXII T F L LTI
| X000KKHKX " [LI LTI TEX LT LT X

THTETTTTET T X0 XXX [111]|

| 200000000/ """ /[IITTTTITTTTETTTEXX L ETTEETTT LT XEX)

TITTTTETT X T XO000C0000GKK | /11 |

H0KK "1 LI TEE XL T X

THETTETETT T XXE XX XOO000GKX! | 111|
THETTTETTTT T XK1 XK XX XK XOOKKKRK /1]]+

| X0000KK/ " 1" LTI LT EXE]

TEXITTTTETTTEXE T XK T X000 /11|

| X000/ " [111 111TTTTITTETT XXX XXX X

TEETTTTTEE XXX T X0 XOOOOO0GKKK! /11|

| X0000KHHX " [/ 1 XU 1 111X [1T X
| X000 ™ /11111 XX T

17 X001 111X T X TTXE T XXX XXXX X XOO0KGKKK! /1] |

HIOKIOGNKX " [1T XTI T

| AN e

11 TXXXITTXE T T XK XX 1 XK [111|
DO 111 XXOXS XI 1 111X XXX XXX 1 XXX XXXOKKNS [111+
///////////XXXXX/////)O(//XXIXX//XXIXXXXXXIXXXXX)O(XXXXXXI/HH

e b s e b e b e b e b b s bbb e b e bbb oo ot

Adrian Clark has a degree in Physics and a PhD in digital image processing.
His post-doctoral research was some of the first into parallel image pro-
cessing. He has worked in industry in the general area of real-time image
analysis, where he gained experience of many types of image and a wide
range of applications.

At Essex, his principal research interests are into the automatic con-
struction of computer vision systems, and into virtual and augmented
reality — the maths underlying them all is quite similar. He has collab-
orated with companies large (Airbus, Leonardo, MBDA, Vitec) and small
(CG Eye, Filament, Railscape). In the dim and distant past, he led UK
involvement in an international standard called Image Processing and In-
terchange. He recently finished a stint as Chairman of the Bristish Machine
Vision Association, the learned society for academic and industrial vision
researchers.

Why is his picture made up from over-printed characters? When he
started his PhD, computers required air-conditioned rooms and this was the
only way anyone could visualize images. Raster displays came along shortly
afterwards but were hugely expensive and limited to about 485 lines and
512 pixels/line. It's good to remember how primitive things were when
most of the ground-breaking research into computer vision was done!

http://www.bmva.org/
http://www.bmva.org/

Contents

1 An Introduction to Computer Vision 11
1.1 Introductionttt 11
1.2 Applications of image processing. 11
1.3 Computer visioninaction 12
1.4 Othertypesofsensor 13
1.5 Image and video file formats 14
1.6 Chris Greening’s Sudoku Grab 15
1.7 Aboutthemodule 19
1.8 Installing OpenCV on your own machine 22
1.9 Furtherreading 23
2 The Human Visual System 24
2.1 Theeye 24
2.2 Fromtheeyetothebrain 27
2.3 Insidethebrain 27
3 Vision Software 29
3.1 Introductiont 29
3.2 Imagesandpixels 30
3.3 Codingupalgorithms. 33
3.4 Histograms and their manipulation 35
3.5 Contrast-stretching and an improved histogram routine .. 38
3.6 Histogram equalisation. 40
3.7 Content-based image retrieval using histograms 40
4 Convolution. 46
4.1 Introduction 46
4.2 Enhancing isolated points using convolution 46
4.3 Blurring e 48
4.4 Usingthemedian 49
4.5 Othertypesofmasks 50
4.6 Implementing convolution 50
4.7 Mathematical morphology. 52
4.8 Finding known patterns in images 54
5 Low-Level Vision 56
5.1 Introductiont 56
5.2 Isolating regions by thresholding. 56

5.3 Regionlabelling 58

5.4 Describingregions 60

5.5 A practical shape-based vision system 62
5.6 Measuring textureo v v vt 64
6 Evaluating Vision Systems 70
6.1 Introduction 70
6.2 Evaluating avisionsystem. 71
6.3 Comparing vision Systemst 73
6.4 Assessing colrecl 74
6.5 Recognising Handwritten Digits 75
6.6 Comparing Performance Figures on Different Datasets ... 77
7 Intermediate-Level Vision. 80
7.1 Introduction 80
7.2 The Canny edge detector 80
7.3 Moravec’s cornerdetector 83
7.4 The corner detector of Harris and Stephens 83
7.5 Other cornerdetectors 85
7.6 The Hough transform for straight lines 85
7.7 Describing corners 89
7.8 SIFT and related techniques. 90
7.9 Local binarypatterns 92
8 LookingatHumans. 93
8.1 Introductioniiiit... 93
8.2 Locating Facesby Colour 93
8.3 Viola-Jones: Haar Features and Adaptive Boosting 94
8.4 Processing FaceImages 98
8.5 Recognising Faces: Eigenfaces 99
8.6 HOG, the histogram of oriented gradients 102
8.7 OpenPose and friends 103
9 Visionina3DWorld 105
9.1 Introductionttt 105
9.2 The geometry of imaging 106
9.3 Computational stereo 107
9.4 Computational stereo inaction 109
9.5 Propagating uncertainty 110
9.6 3D coordinate EEOMELIY v v v v v v v vt . 111
9.7 Correcting perspective effects 114
9.8 Visual structure from motion 116
9.9 Visual SLAM 118
10 High-Level Vision with Machine Learning 121
10.1 Introduction 121
10.2 Unsupervised learning using k-means 122
10.3 Simple supervised learning with WISARD 123
10.4 The MNIST test €ase o v v v v v v oo iee e 124
10.5 Support vector machines. 125

10.6 The genetic algorithm 128

10.7 Genetic programming 131

11 Deep Learning and Neural Networks 137
11.1 Introduction 137
11.2 The multi-layer perceptron 137
11.3 MLPinsoftware 140
11.4 Convolutional neural networks 141
11.5 Transfer learning. 147

11.6 DISCUSSION . v v v v v e e e e e e e e e e e e e 147

List of Figures

1.1 Applications of computer vision
1.2 Autonomous cars (images taken from the web)
1.3 RoboCup (images from http://www.robocup.org/)
1.4 Remotely-sensed imagery of the Mediterranean region . . .
1.5 Thermal imageofahouse
1.6 AnXrayimage. v v v it e e
1.7 A synthetic aperture radar (SAR) image
1.8 A depth image captured from a Microsoft Kinect
1.9 Sudoku grid captured from a newspaper
1.10 After thresholding
1.11 Tidying up the thresholded image
1.12 Finding thegrid,
1.13 The Hough transform of thelines
1.14 Hough features superimposed on the grid
1.15 The image after rectification to a rectangle
1.16 The final grid, with recognised numbers superimposed . . .

2.1 A cross-section through the humaneye
2.2 The relative spectral sensitivity of cones
2.3 The spectral sensitivity of rods
2.4 The distribution of rods and cones on the retina
2.5 The excitatory—inhibitory nature of ganglion cells

3.1 A digital image of an upward-pointing arrowhead
3.2 Pixels have a spatialextent
3.3 Magnified newsprint,
3.4 Representing colour as hue, saturation and value
3.5 Representations of colour images in software
3.6 Histograms corresponding to differently-exposed images . .
3.7 Result of histogram-equalising the image in Figure 3.6(c) .

4.1 A photograph of the Essex campus and its edges
4.2 Tlustration of the convolution process
4.3 Morphological expand, shrink and opening
4.4 Finding an object’s boundary and skeleton.
4.5 Locating proteins on cells using matched filtering
4.6 Template matching used to locate occurrences of ‘a’ in text

5.1 Histogram of a typicalimage

http://www.robocup.org/

5.2 Example 10-level image and its histogram, with the Otsu
threshold marked 58
5.3 Distinct regions of an image and the result of region labelling 59

5.4 Irisspeciesused by Fisher 60
5.5 Visualization of Fisher’sirisdata 61
5.6 Extremal points can form a shape descriptor 62
5.7 Biscuits on a virtual conveyorbelt 63
5.8 Identification of circular and rectangular biscuits 64
5.9 Broken and overlapping biscuits are rejected 64
5.10 Rectangular biscuits at an angle and their bounding boxes . 64
5.11 Brickwork is a regular texture 64
5.12 Mosaic of irregular textures 65
5.13 Grey-level co-occurrence matrix of the brickwork of Fig-

ure 5.11 for shiftsof X =5,Y =3 65
5.14 Textures and corresponding GLCMs for shifts of X =10,V =

72 67

5.15 Rotated textures and corresponding GLCMs for shifts of
X = 10,Y = 7 (shown with a logarithmic scale of grey

levels to bring out detail) 68
5.16 GLCMs for various shifts 69
6.1 Examplesof ROCcurves 72
6.2 ROCcurvesthatcross 72
6.3 The tails of a binomial distribution 74
6.4 The various classes of fruit used for assessing colrecl ... 74
6.5 Examples from the MNIST database 76
7.1 Profile across a Gaussianmask 81
7.2 ObtainingM and 8 fromHandV 81
7.3 Quantization of 6 (x,y) into four directions 81
7.4 Non-maximum suppression 82

7.5 Linking together edge segments using hysteresis thresholding 82
7.6 The aperture problem 82
7.7 The different cases considered in the Moravec corner detector 83
7.8 Comparing the results of different edge and feature detectors 84

7.9 The FAST cornerdetector 85
7.10 Edge detectors usually deliver only segments of edge 85
7.11 Mlustration of computing the Hough transformation 86
7.12 Conventional and parameteric representations of a line. . . 87
7.13 An image and its Hough transform 87
7.14 The Hough transform can be used in a lane-following system 88
7.15 SIFT features marked on a natural image 90
7.16 An example of feature matching using SIFT 90
7.17 LBP neighbours 92
8.1 Successful detection of human skin by colour 93
8.2 Skin detection by colour is easily confused 94
8.3 Haarfeatures., 94
8.4 Haar feature that helps detecteyes 95

8.5 An image and its integral image 95

8.6 Principle of calculating an integral image 96

8.7 Viola-Jones face location in action 97
8.8 Face dimensions that accord to the golden ratio are sup-
posed to be more attractive 98
8.9 Newspaper article from 2017 on beauty and the golden ratio 99
8.10 Model-based image coding 99
8.11 Ilustration of principal component analysis 100
8.12 Someeigenfaces 101
8.13 The six ‘universal’ expressions 102
8.14HOGcellso 103
8. 15 HOG gradients v v v vt et 103
8.16 Tracking human motion with OpenPose 104
9.1 Imaging geometry of a pin-hole camera 106
9.2 Imaging geometry of areal camera 107
9.3 The geometry of computational stereo 107
9.4 Stereo pair of the Candide 3D head model 109
9.5 Locations are accurate only to the nearest pixel. 110
9.6 The fundamental 2D transformations 111
9.7 Rectification of a perspective-distorted image 114
9.8 The principle of 3D reconstruction by structure from motion116
9.9 Reconstructionof Square2 117
9.10 A reconstruction of Elmstead’s church 117
9.11 A coral reef reconstruction 118
9.12 Visual SLAM in operation 119
10.1 The k-means algorithm 123
10.2 Illustration of the operation of WISARD 123
10.3 WISARD on display in the Science Museum 124
10.4 Typical images from the MNIST database 124
10.5 Principle of the support vector machine 127
10.6 The kernel trick’. 127
10.7 A population of N chromosomes, each having P values . . . 129
10.8 Real-valued crossover 130
10.9 Representation of program code as a parse tree. 131
10.1QCrossover exchanges sub-trees between parse trees 132
10.1Vasmine, a GP-based vision system construction tool 133
10.12Some problems solved by Jasmine 134
10.13[raining data and ground truth for a simple vision task . . . 135
10.14A cascade of binary classifiers. 136
11.1 Tllustration of a multi-layer perceptron 138
11.2 Tllustration of a single neuron 138
11.3 Common choices for the activation function of a neuron . . 138
I1.4LeNet 144
115 AlexNeto vt 144
11.6 GoogLeNetttt 145
11.7VGGNEt . . ottt e 145
I1.8 ResNet.ot 146

11.9 Problematic classification with deep networks 148

List of Tables

1.1 Popular image file formats. 14
1.2 Image formats devised for specific application areas 14
1.3 Common video formats 15

3.1 Means and standard deviations of the images of different
exposuresin Figure 3.6 42

6.1 Possible outcomes for a single test from a pair of algorithms 73

6.2 Converting Z values onto confidence limits 74
6.3 Error rates from colrecl.res 75
6.4 Class confusion matrix calculated from colrecl.res 75
6.5 Distribution of the 60,000 training and 10,000 test images
amongst the classes in the MNIST database 76
6.6 Table of error rates for T1.000 76
6.7 Class confusion matrix for T1.000 77
6.8 Table of error rates for T0.400 77
6.9 Confusion matrix for T0.400 78
6.10 Comparison of results for T1.000 and T0.400 using McNe-
MArSteSt + . v vt e e e e e e e e e e e 78
10.1 Numbers of training and test examples in MNIST 124
10.2 MNIST WISARD errorrates« v v v v v v v v .. 125
10.3 Class confusion matrix for WISARD on MNIST 125
10.4 Table of error rates for WISARD on a subset of MNIST . .. 126
10.5 Class confusion matrix for WISARD on a subset of MNIST . 126
10.6 Table of error rates for SVM on MNIST 129

10.7 Class confusion matrix for SVM on MNIST 129

1

An Introduction to Computer Vision

This chapter gives a short introduction to the discipline of computer vision. It
gives examples of computer vision applications and technology, then outlines a
complete vision system which involves both pixel-level operations and a machine
learning component, to give an idea of what is typically involved.

The chapter goes on to discuss the nature of the module. Firstly, it describes
teaching material such as the notes you are now reading and ancillary material
to help your understanding: video clips, multiple-choice quizzes, and so on.
Computer vision is a practical subject, so hand-in-hand with the taught material
is a programme of experiments that you need to carry out. Finally, assessment
of the module is discussed.

1.1 Introduction

This module is concerned with image processing and computer vision. As
you might expect, this involves the manipulation of image data, usually
in the context of making a computer ‘understand’ what it is looking at.
People who have used a tool such as Photoshop or Paint Shop Pro to fiddle
with digital camera or scanned images, or with Premiere to edit digital
video, have done image processing. However, the emphasis in this course
is on the automatic processing and analysis of image data, extracting useful
information from the images. In fact, perhaps the most useful way to start
this course is to consider where image processing and computer vision
are used. After that, some fundamental notions about images and their
representation are discussed.

1.2 Applications of image processing

Image enhancement: contrast enhancement in Photoshop etc., red-eye re-
moval, correcting camera distortions, noise reduction, deblurring — all
involve image processing.

OCR: by far the most successful image analysis application to date is op-
tical character recognition, the conversion of printed text into machine-
readable characters.

Surveillance: automatic analysis of town centre CCTV imagery is an obvi-
ous application, though one that cannot currently be achieved. However,
automatic number plate recognition is entirely viable and formed the

views

Ty, T
) = -
(f) Augmented reality

Figure 1.1: Applications of computer
vision

http://www.cs.cornell.edu/~snavely/bundler/
http://www.flightgear.org/tours/developing-computer-vision-algorithms-with-flightgear/
http://vase.essex.ac.uk/theses/2009-Oechsle_Olly.pdf
http://vase.essex.ac.uk/theses/2009-Oechsle_Olly.pdf
http://www.microsoft.com/en-us/kinectforwindows/
http://visionwang.com/2008/12/08/future-iphone-applications-on-image-recognition/

12 COMPUTER VISION

basis of London’s pioneering congestion charging system,; this function-
ality is now commonplace on road networks and in car parks.

Inspection: monitoring items on production lines, such as machined parts
or foodstuffs.

Guidance: controlling the motion of robots based on imagery from a cam-
era or other sensor; likewise other vehicles such as cars on roads —
even guided missiles.

Coding: modern image coding techniques such as MPEG-4 (“DivX”) use
image analysis to segment the foreground from the background; and
there are more impressive research techniques such as model-based
coding that have the potential to reduce data rates a great deal further.

Biometrics: fingerprints, iris scanning, handwriting, face recognition — all
biometric systems involve image analysis or its companion discipline of
pattern recognition.

Scene reconstruction: virtual studios, compositing computer-generated and
live action in movies, augmented reality.

Science: microscopy, remote sensing, astronomy, even trying to understand
how the human visual system works.

Some of these applications, and some not listed above, are illustrated in
Figure 1.1. The market for image processing applications is several billions
of pounds per annum — and it is set to be worth a great deal more when
techniques become more robust.

1.3 Computer vision in action

Autonomous vehicles

The most exciting area of robotics is arguably autonomous vehicles. Since
about 2000, a great deal of effort has been expended on research into
driverless cars. The event that brought this to public attention was the
DARPA “grand challenge,” in which teams from different research groups
competed to make their autonomous vehicles navigate a 132-mile course
in the Mojave Desert in 2005. As has been well-documented, Stanley
from Stanford University won the $2 M prize, navigating the course in a
little under 7 hours. There have been other, similar events since then. In
2007, the Tartan Racing team (Carnegie-Mellon and others) won an urban
grand challenge for another $2 M prize. In 2010, an autonomous vehicle
travelled from Italy to China, an under-reported but ground-breaking event.
These three vehicles are depicted in Figure 1.2. Subsequent to this, most
research in the area has been led by industry, with Google and Tesla being
major players. There are also driverless car initiatives here in the UK, with
a major test under way in Milton Keynes. Here at Essex, we’re not too
interested in autonomous cars but we have active threads of research into
robot submarines and robot aerial vehicles, both fixed- and rotary-wing.
Another active area of mobile vehicle research is, of course, the ex-
ploration of other worlds. NASAs Mars rovers, Spirit, Opportunity and

(c) Parma, 2010

Figure 1.2: Autonomous cars (images
taken from the web)

Figure 1.3: RoboCup (images from
http://www.robocup.org/)

http://www.robocup.org/

AN INTRODUCTION TO COMPUTER VISION 13

more recently Curiosity, have been exploring the planet. All of them are
equipped with stereoscopic, colour cameras and are able to sense in visible
and infra-red wavebands. Among other things, imagery from the cameras
is used to guide the rovers’ robotic arms.

RoboCup and related competitions

You can think of RoboCup as the World Cup for soccer-playing robots.
Although seemingly facetious, the competition aims to foster intelligent
robotics research by providing a standard problem where a wide range
of technologies can be integrated and examined — and it has proven to
be very effective at this. There are various classes of entry, ranging from
simulation right up to humanoids. An Essex team finished third in the
1999 event; we haven’t entered in recent years.

RoboCup spawned a number of related events, the best-known of which
was first called the Robot Olympics but was re-named (mostly likely be-
cause of copyright problems) to RoboGames. It would be quite fun to enter
these. ..

1.4 Other types of sensor

There is no reason why an image must capture what we humans see.
Satellites that observe the Earth from space (see Figure 1.4) regularly
capture imagery not only in the visible wavebands but also in the infra-red.
This is useful because the ratio of the intensity of some visible to near
infra-red wavebands is a good way of determining whether vegetation is
stressed, often through lack of water. This can be done using the Normalised
Difference Vegetation Index (NDVI), defined for each pixel as

NIR—R

—_— 1.1
NIR+R (.1

where NIR and R are the near infra-red and red values of the pixel.

There are also sensors that capture a spectrum for each pixel, known as
hyperspectral sensors; these normally record well over 100 spectral bands
simultaneously.

Infra-red radiation in the 8-10 um region corresponds to the temperat-
ures that we experience on the Earth’s surface and so allows us to form
‘heat pictures’ (Figure 1.5). Thermal imaging cameras are now available
commercially and are used for things like identifying how well insulated
houses are. Thermal cameras with a reasonable number of pixels on
their sensor (say 640 x 480) are currently expensive, though new sensor
technologies mean that the cost will probably fall if there is a market for
them.

Infra-red radiation uses wavelengths longer (less energetic) than visible
light. If one employs radiation that is more energetic than visible, we pass
through the ultra-violet wavebands and end up in the X-ray region. As
we all know, X-rays are able to pass through soft tissue but are attenuated
by bone, so they are a good way of imaging broken bones or lesions in
soft tissue, or metal weapons in airline baggage. Figure 1.6 presents a
mammogram (a breast X-ray) taken from the mini-MIAS database which

NDVI low

Figure 1.4: The Normalised Difference
Vegetation Index (NDVI) of the Mediter-
ranean region, using visible and infra-red
images captured from satellites. The
NDVI allows stressed vegetation to be
identified.

Figure 1.5: Thermal image of a house.
The image is actually captured in grey-
scale, with black being cold and white
hot, but the different values grey are
mapped onto different colours to produce
this “pseudo-colour” image.

Figure 1.6: A mammogram (an X-ray
image of a human breast) showing a
lesion. Distinguishing cancerous lesions
from benign ones automatically by
computer vision is difficult.

http://www.robocup.org/
http://robogames.net/
http://www.fis.uni-bonn.de/en/recherchetools/infobox/professionals/fascination-remote-sensing/infrared-plants
http://gallery.hd.org/_c/natural-science/_more2011/_more03/thermal-imaging-of-house-interior-and-exterior-on-chilly-March-morning-about-4C-ambient-with-Flir-Systems-b50-in-Kingston-London-England-25-DHD.jpg.html

14 COMPUTER VISION

shows lesions. Distinguishing lesions that are cancerous from benign
ones is difficult for a radiologist to do, and substantial effort has been
expended for a number of years in attempting to produce automatic ways
of performing this task. It has still not been solved completely.

We are all used to seeing blips on radar screens in movies. There are
now a number of imaging radar technologies which yield a complete image
rather than an isolated blip. Unlike the other sensors we have considered to
date, radar is an active sensor, meaning that it send out a radar ‘beam’ into
the world and detects reflections. There are several unusual consequences
of this; for example, tall features appear to be leaning towards the sensor.
An image from a radar sensor is shown in Figure 1.7.

Our final example of an unusual sensor is the Microsoft Kinect. As well
as a camera working in the visible, it features a camera that records in
the near infra-red. There is also an arrangement that projects an infra-red
pattern of dots into the environment, and the horizontal displacements
of these dots let it determine how far away things are — this is similar in
principle to the stereo arrangements considered in Chapter 9. The end
result is an image in which each pixel represents the distance from the
camera to an object: the higher the value of a pixel, the nearer it is to the
camera — see Figure 1.8.

The technologies touched on in the previous paragraphs are by no
means the only ones that are able to yield images. People who have
studied robotics will be familiar with sonar and lidar (“laser stripers”),
mostly for obstacle detection; yet both of these can yield images. Radio
astronomers are able to build up images of nearby stars and nebulae.
Radiation with a frequency of around 1 THz is able to pass though walls
and clothing and is being trialled in security monitors for detecting firearms
hidden in clothing. Anything that can produce a regularly-sampled grid of
numbers can be analysed using computer vision techniques.

1.5 Image and video file formats

There are well over a hundred image file formats used around the world.
The most common are listed in Table 1.1 but there are also many others
used in particular niches, some of which are listed in Table 1.2. They are
all broadly similar, storing the values of the pixels along with ancillary
information such as the dimensions of the image (the number of pixels
per line and the number of lines).

However, there is an important distinction between some image file
formats that you need to be aware of, as this affects their value for image
analysis. Some image file formats are lossy, meaning that they discard
some of the information contained in the pixels captured, though usually
in a way that may not be visually obvious. The best-known lossy format
is JPEG — which is unfortunate as it is by far the most commonly-used
file format, not least because most digital cameras store photographs in
JPEG format. The reason that JPEG is lossy goes back to the times when
images were large relative to the capacity of disks etc.: removing visually
imperceptible information results in smaller file sizes. However, such image
formats are poorly suited to image analysis because the information that is

Figure 1.7: A synthetic aperture radar
(SAR) image. Note how noisy it is
compared to a conventional image, a
combination of the need for the radar to
illuminate the scene and the coherent
nature of the imaging.

Figure 1.8: A depth image captured from
a Microsoft Kinect, with brighter meaning
closer to the camera.

GIF index-colour graphics
PNG Portable Network Graphics
JPEG standard for digital cameras
PGM, PPM used by PBMPLUS and NetPBM
HEIC “high-efficiency” format

used by Apple and others

Table 1.1: Popular image file formats.
The first three are the most widely-used
while the others are often encountered in
computer vision.

BMP Microsoft Windows
TIFF printing and publishing industries
FITS astronomy

DICOM body scanners

Table 1.2: Image formats devised for
specific application areas

http://remotesensing.spiedigitallibrary.org/article.aspx?articleid=1485880
http://official-rtab-map-forum.67519.x6.nabble.com/Option-to-select-between-to-different-kind-of-depth-images-td2510.html
https://en.wikipedia.org/wiki/High_Efficiency_Image_File_Format

AN INTRODUCTION TO COMPUTER VISION 15

‘visually imperceptible’ tends to be around the edges of objects, and those
are precisely what many vision algorithms work with.

If using JPEG is not a good idea, then what formats are good? For
general work, PNG (“portable network graphics”) has become popular and
the author recommends you use that if you can. A reasonable proportion
of the computer vision community uses the family of formats known as
PBMPLUS or NETPBM as they are easy to read and write. Fortunately, there
are good conversion utilities available: search for NETPBM or ImageMagick
in Google. These are available in our Software Labs, under at least Linux.

Just as there are many image formats, there is a wide range of movie
(video) formats. The most common are listed in Table 1.3. All of these
involve lossy compression: the volume of data is too great for storage or
transmission uncompressed or with loss-less schemes. The compression
schemes typically use JPEG-like compression within a frame (“intra-frame”
compression) and allow regions in one frame to be translated to appear in
subsequent frames (“inter-frame” compression).

Only the first two in the list are internationally standardised. In fact,
MPEG is a series of standards: MPEG-2 is essentially what is used for
standard-definition broadcast digital television while the more recent
MPEG-4 is used for high-definition terrestrial services, as well as “Freesat”
and Sky. MPEG-4 is more effective at compressing video streams so that
they require a lower data-rate but involve more complicated algorithms.

Most low-cost devices emit AVI-format video streams. Such video tends
not to use inter-frame coding, only JPEG-compressing each frame. The
resulting files are large but are fairly easy to unpack — in particular,
OpenCV, which is used in the laboratory sessions associated with this
modaule, is able to read the frames from (some types of) AVI and MP4 files.
More sophisticated devices normally produce MPEG-4 files, at least until
one is in the realm of professional video cameras.

1.6 Chris Greening’s Sudoku Grab

The following is taken from the blog of a former CSEE research student, Chris
Greening:

http://sudokugrab.blogspot.com/2009/07/how-does-it-all-work.html

In the entry, he talks about how he designed and implemented an iPhone App
which captures images of Sudoku puzzles and converts them into text; many
of the techniques will be familiar to you by the end of the module.

I get the odd email from people asking how Sudoku Grab works. I've
replied to quite a few individually, but I thought it would be much easier
to just explain it on the blog. Also when I demo the app people are often
amazed (and equally, some people are also often not amazed). For the ones
that are amazed they can get a bit enthusiastic and start coming up with all
sorts of amazing ideas on what you could do with “the technology”. I then
have to explain to them that it’s actually not doing anything really clever
and that their idea might actually be quite a hard problem in comparison.

Sudoku Grab is a collection of some fairly basic image processing tech-
niques that most engineering students at University could probably figure

MPEG the Motion Picture Expert
Group’s standard for broadcast
video

MP4 MPEG version 4, a more sophist-
icated video encoder

AVI Microsoft’s “audio video inter-
leave”

WMV Microsoft’s “windows media
format”

MOV Apple’s QuickTime movie
FILV Adobe’s Flash video

Table 1.3: Common video formats

http://sudokugrab.blogspot.com/2009/07/how-does-it-all-work.html

16 COMPUTER VISION

out how to put together. All of the algorithms used are either commonly
available and can be found on the internet or can be written pretty easily.
Obviously tweaking them and getting them all running together seamlessly
is the real trick.

One of the things that makes recognising Sudoku puzzles an easier
task than most image processing/recognition problem is that it is a highly
constrained problem — a standard Sudoku puzzle is going to be a square
grid and it will only contain the printed numbers 1-9. These two points
are very important. The first point — it’s a square grid — tells us what
shape a puzzle is and what we should be looking for in an image. The
second point — it will only contain the printed numbers 1-9 — tells us
that we aren’t going to need a sophisticated OCR system. When we look at
the problem there’s nothing that jumps out and says “nobody has solved
this before — it’s probably really hard.” We can also add some additional
assumptions:

* In a photograph of a sudoku puzzle, the puzzle is going to be the
main/most important object on the page.

* A user is going to be photographing the puzzle — they aren’t going
to take a picture of a whole newspaper page, they won’t be taking a
photograph of a coffee shop and expecting us to find a sudoku puzzle
that someone is playing four tables away. Also, the user is going to try
and capture the whole puzzle, they won’t miss a corner or chop off the
top.

* The puzzle will be orientated reasonably correctly.

No-one (hopefully) is going to be taking a picture of an upside down
puzzle, and typically they will be trying to align it nicely in the camera
viewfinder so it is reasonably straight without too much distortion. So at
the start of our Sudoku puzzle recognition we’d expect to be getting an
image similar to the one in Figure 1.9.

We can see that this meets all the assumptions above. We’ve got the
whole puzzle — there are no bits missing, the puzzle is reasonably straight
— it’s not upside down or at some crazy angle, it’s also the main thing in
the picture — there’s not a lot of distraction in the image, it’s just a picture
of a sudoku puzzle. So, how are we going to go about recognising this
image? There are basically 4 main problems to tackle:

* Where is the puzzle?

* Once I've found the puzzle how do I turn it back into a square puzzle?
* T've got the puzzle — how do I find the numbers?

* How do I recognise the numbers?

Lets look at each of these in turn.

Where is the puzzle? The first thing to do in any image processing problem

is to reduce the amount of data you are dealing with. We started from the
full colour high resolution image. The first thing we can do is to throw

Figure 1.9: Sudoku grid captured from a
newspaper

AN INTRODUC

away the colour information. Looking at our sample image, having colour
does not add any information that is useful to us.

What else can we see? An obvious thing is that this is a printed page, it’s
basically a black and white image. So the first step in our image processing
is to throw away even more information. We are going to threshold the
image so that we have either background pixels (the paper) or foreground
pixels (the printed elements).

There are a variety of thresholding techniques available to us:

http://en.wikipedia.org/wiki/Thresholding_(image_processing)

The initial naive approach is the obvious one. Light pixels are the paper
and dark pixels are the ink, so lets pick a number (say the average pixel
value for the image) and anything less that that we’ll set as foreground
and anything higher than that is background. This would give us an image
that looks like the one in Figure 1.10.

It’s kind of OK — there’s some paper showing up as foreground in the
top left, but the puzzle is also showing up, but as we go down towards
the bottom right the puzzle starts to break up. We can see that this simple
approach doesn’t really handle variable lighting on the page. And we can
imagine that if there are any shadows on the page the results will be even
worse.

What we need is a thresholding method that can take account of this
problem. My personal favourite is a simple adaptive threshold. For each
pixel in the image take the average value of the surrounding area. If the
pixel is less than 90% of this value then it is ink, if it is higher then it is
paper. The reason for choosing 90% of the value is that this lets us filter out
flat areas or areas that aren’t changing very much (i.e., blank bits of paper
or solid black sections). This results in the image shown in Figure 1.11.
As you can see it’s a lot better than the previous attempt.

We can now apply one of our assumptions: “In a photograph of a sudoku
puzzle, the puzzle is going to be the main/most important object on the
page.” We can interpret this in the following way: the most important
thing on the page probably has the most foreground pixels. So let’s extract
every blob of set pixels and see which blob has the most. That blob of
pixels must be our sudoku puzzle. To do this we’ll using a blob extraction
algorithm. The simplest way of doing this is to scan through the image
looking for a set pixel. Every time we find a set pixel we perform a “flood
fill.” The pixels that we fill in make up our blob. Running this process and
then taking the blob with the largest number of pixels gives us the image
in Figure 1.12.

So, that’s great, we’ve managed to go from an picture of a puzzle in
a newspaper to finding the pixels which are probably part of a Sudoku
puzzle. Most importantly we have the pixels that make up the outside
frame of the puzzle. Now what?

Ideally it would nice if we knew the coordinates of the corners of the
puzzle frame — that would let use draw a box around it and know the
exact location of it. There are quite a few ways that we could approach
this. A simple approach might be to scan through the pixels looking for the
top left, top right, bottom left, bottom right. That might work. I've chosen

e Thoar gr bl ey [0 e Ehhuena, anef
P [AN R 1O Y. et t;wn‘r:::.’. A

Figure 1.11: Tidying up the thresholded
image

Figure 1.12: Finding the grid

http://en.wikipedia.org/wiki/Thresholding_(image_processing)

18 COMPUTER VISION

to use one of my favourite algorithms, the Hough transform (discussed
later in the module). This can be used to detect straight lines (and many
other shapes) in an image; rather handily, straight lines are what make
up a sudoku grid. So lets feed our extracted grid pixels into a Hough
transform. This gives us this Figure 1.13, which has the Hough transform
mapped back into an image so we can see it.

This image represents all the possible lines that are in our image. The
x coordinate is the angle of the line and the y coordinate is the distance
of the line from the origin (I've trimmed the image to make it a bit smaller
so our y coordinate looks a bit smaller than it would normally). We can
see that we have a bunch of peaks around the 0 and 180 degrees positions
(on the left and the right of the image) and a bunch of peaks in the middle
of the image, around the 90 degrees mark. These correspond to horizontal
and vertical lines in the image.

We really only care about the leftmost, rightmost, topmost and bottom-
most lines. These correspond to the peaks at the top and bottom of the
two groups. If we take these peaks and turn them back into lines we have
the lines along the top, bottom, left and right of the puzzle — find where
they intersect and we have the corner coordinates of the puzzle. This lets
us produce the image you can see in Figure 1.14. We now know exactly
where in the original image — we have found the sudoku puzzle!

Once I've found the puzzle how do I turn it back into a square puzzle? So,
we’ve got the corner points of the puzzle — it’s currently not really usable
for much as it’s a bit distorted. What we need is some way of mapping
from the puzzle in the picture back into a square puzzle.

We need a transform that will maps one arbitrary 2D quadrilateral into
another. For this we can use a perspective transform:

_ax+by—+c

~ gx+hy+1

y— dx+ey+f

gx+hy+1
This will map a point given by x, y in one quadrilateral into a new point
X,Y in another quadrilateral. As you can see there are eight unknowns
in these two equations — but fortunately we have 8 values (the corner x
and y coordinates of the puzzle and our arbitrary x and y corner points of
our square image). Solving these equations gives us the a, b,c,d,e, f,g,h
which provide us with a mapping to get our puzzle out nice and straight, as
Figure 1.15 shows. A lot more information on this approach is on http://
alumni.media.mit.edu/~cwren/interpolator/ and the equations are
discussed further in the notes on stereo vision. [This link has disappeared

since Chris wrote his notes.]

I've got the puzzle — how do I find the numbers? So we’ve now got an
undistorted square Sudoku puzzle. That’s good, but it doesn’t really help
us that much — we could have got this far by making the user line up the
puzzle with a square shape in the viewfinder when they took the picture!

Let’s try and see which boxes in the puzzle actually have numbers in
them. This is actually pretty straightforward, all we have to is divide the

Figure 1.13: The Hough transform of the
lines

Figure 1.14: Hough features superim-
posed on the grid

Figure 1.15: The image after rectification
to a rectangle

http://alumni.media.mit.edu/~cwren/interpolator/
http://alumni.media.mit.edu/~cwren/interpolator/

AN INTRODUCTION TO COMPUTER VISION 19

puzzle into a set of boxes, threshold each box and apply the blob extraction
algorithm to the middle of the box. If we manage to extract a blob then
it’s more than likely that the box must contain a number. Throw away the
empty boxes and you've got the numbers that you need to recognise.

How do I recognise the numbers? We can now take the blobs from the
previous stage and try and work out what numbers they represent — this
is where the world becomes your oyster. There are a huge number of
techniques for performing OCR and a huge number of non-specific pattern
recognition algorithms. For my implementation I chose to use a neural
network. I collected a large number of extracted number images from
some sample puzzles and hand classified them. I then used these to train a
simple neural network to recognise the digits 1-9. This works remarkably
well, but I suspect I am probably using a hammer to crack a nut in this
instance... Anyway — this gives us our final result — a sudoku puzzle
with recognised numbers (Figure 1.16)!

There are a huge number of improvements that can be made to these
basic steps. You can add intelligence at every step to improve your chances Figure 1.16: The final grid, with recog-
of recognising a puzzle. But basically, that’s it! nised numbers superimposed

1.7 About the module

The first thing to appreciate is that computer vision is far from being a
solved problem. Research into it is extraordinarily active, with the UK
contributing some of the most important results globally. The development
of the discipline is so rapid that about half the content of this module
couldn’t have been taught as little a decade ago. Given what it is trying to
do, you might think that vision is an area of artificial intelligence, placing it
squarely in the realm of computer science. While this is true to some extent
it is far from the whole story, with researchers also having backgrounds
in disciplines such as electronic engineering, mathematics, physics, psy-
chology and medicine. The contributions of the various disciplines will
become more apparent as you learn about vision techniques.

The last decade or so has seen three major technological influences
on computer vision. Firstly, digital imaging has transformed the capture
of image and video data from something that pushed at the boundaries
of real-time hardware and software into an everyday process. Secondly,
cheap data storage and processing allows worthwhile quantities of image
and video data to be stored and manipulated in reasonable timescales.
The final influence, a consequence of having more CPU cycles to burn,
is a huge expansion in the use of machine learning and an improvement
in the learning algorithms available. Machine learning has actually been
employed in real-world vision systems for a long time but it is now difficult
to find vision applications the don’t use machine learning. We shall explore
some types of machine learning for vision tasks in the second half of
the module. Real-world experience with machine learning is currently a
highly-marketable skill, attracting good salaries from major international
companies.

In fact, this is not one module but two, for it is followed by both final-

20 COMPUTER VISION

year undergraduate students (CE316) and postgraduate students (CE866).
Although most of the taught material applies to everyone, the assessments
for the different groups is different and you will be reminded of this from
time to time.

Learning outcomes...and afterwards
There are four learning outcomes for the module:
1. Describe the principles and main methods for computer vision.

2. Explain, on examples of visual data, how some methods facilitate
aspects of two-dimensional vision.

3. Explain, on examples of visual data, how some methods facilitate
aspects of three-dimensional vision.

4. Write computer programs to solve simple vision tasks.

The coursework and examination make sure you can do all of these.

You might think that a module such as this one is intended to give you
knowledge about a subject. That’s true of course but there is more to it.
In order to award accredited degrees, the professional bodies that review
them require us to move from spoon-feeding you content in year 1 to
having you figure out how to solve problems yourself in year 3 — that
is the underlying reason for all the team project modules you have been
involved in as well as your individual project. MSc students are meant to
be able to learn about new things with little external guidance.

Unlike many of my colleagues, the author has worked in industry and
knows that a project often starts with your boss saying something like
“Find out about this and tell me if it can be done, and if so how.” Having
found out how, you're then the poor sucker who has to implement it. The
author is a great believer in preparing you for this kind of environment,
and will do that through a combination of the lectures, the experiments
and the examination. You have to play your part too though, trying to
figure out what you know can help you solve problems you encounter.

Teaching materials

The notes you are now reading form the primary resource for the module.
They present the underlying principles, show how things are calculated
and discusses practicalities. Each topic, roughly a chapter in these notes, is
backed up by a multiple-choice quiz which you take online and is automat-
ically marked as you go through it. Each quiz has ten questions selected
randomly from a pool, and the answers are juggled each time you take
it. You can take these as many times as you like. People usually find
these most useful for checking that they have grasped the ideas. They are
thought to be a little easier than the multiple-choice questions used in the
formal progress tests discussed below.

As indicated above, computer vision is an inherently practical subject
so it essential that you learn how to use the principles and techniques
described in lectures in practice. You will therefore carry out a series of

AN INTRODUCTION TO COMPUTER VISION 21

experiments. These are examined in a pair of progress tests so it is essential
you keep a record of what you did and what you found. If you have a
long-held wish to learn BIX or to use Jupyter notebooks but never had a
good reason to use them in anger, this is a good time to do so. However,
a Word or OpenOffice document, a plain text file or a good old paper
notebook are all equally good in terms of keeping a record.

Assessment

As mentioned above, the experiments are examined in two open-book
progress tests, the first roughly half-way through the module and the
second at its end; each test is worth 20% of the overall module mark.
Note that the progress tests are different for CE316 and CE866 students.
During the progress tests you are expected to refer to your records of the
experiments, which focus on these specifically rather than on the lectured
content.

The remainder of the assessment, 60% of the total module mark, is via
a conventional examination which takes place in the summer term. Again,
this is different for CE301 and CE866 students.

Software

In order to do the practical work discussed above, you need a computer
and some vision software. The particular combination that is becoming
most popular is OpenCV, which was written in C++ because it is intended
for real-time processing but has now sprouted “wrappers” for Python.
The particular image representation used is compatible with the numpy
(“Numerical Python”) and scipy (“Scientific Python”) extensions, and with
the machine learning capabilities of Scikit-learn, TensorFlow and other
packages. OpenCV is not an application like Photoshop but a library of
routines that you call from your own programs. OpenCV has wrappers
for other languages too but using the Java wrappers is notoriously tricky,
while programming things up in C++ ab initio is time-consuming; that
is why Python is recommended. Pretty much all the code written during
lectures is in Python. In any case, Python has become the de facto standard
language for gluing together calls to standard libraries, widely used in
high-tech industries.

You should become familiar with OpenCV as you do the experiments.
It works fine under Windows, macOS and Linux, and recipes for installing
it under your operating system of choice are given in Section 1.8. It is
also available on the Horizon portal in CSEE. It normally works better in
the Unix (Linux, macOS) world than in Windows, reflecting the operating
systems on which it is most heavily used: a large proportion of vision
researchers and developers — in fact, a large proportion of researchers
in most of science and engineering — use Linux. This is partly because
it tends to be better at squeezing the last ounce of performance from
commodity hardware, important if your machine learning algorithm takes
literally weeks to run or want your application to work on low-end systems.
However, many of us find that the command line is a flexible and powerful
way of controlling a computer and we look down on people wedded to

https://www.latex-project.org/about/
http://jupyter.org
http://opencv.org
http://www.numpy.org/
http://www.numpy.org/
http://www.scipy.org/
https://scikit-learn.org/
https://www.tensorflow.org/
https://csee-horizon.essex.ac.uk/

22 COMPUTER VISION

pointy-clicky interfaces.
If your Linux skills need improvement, here are some places to look:

* The author’s teaching material for CE222: Operating Systems. Drop
him an email if you would like to be able to access it.

* A Linux tutorial, written by Michael Stonebank at Surrey.

* A a series of tutorials about the Unix shell. Incidentally, you can drive
macOS with exactly the same commands as Linux.

1.8 Installing OpenCV on your own machine

You can install OpenCV on your own computer, either under Unix (macOS,
Linux, etc) or Windows. As OpenCV is being developed so quickly, there
are significant differences between versions so programs written for a
recent version may well not work with older ones and vice versa. It makes
sense for you to install the same version on your machine as is used in
CSEE’s teaching labs, and the easiest way to find out the version you are
using is to print it out via the Python interpreter:

$ python3

>>> import cv2

>>> print cv2.__version__
4.6.0

>>>

You’ll do this in the first experiment. Note that the version number printed
out here is the one on the author’s machine at the time of writing these
notes; the version in the software labs may not be the same.

Under Linux (Ubuntu 20.04), I found the easiest route was to install
Python 3 and pip, its package installer, then type the shell incantations:

pip3 install numpy
pip3 install opencv-python
pip3 install opencv-contrib-python

If memory serves me right, this also installed scipy and matplotlib; but if
it doesn’t, it is easy enough to install them yourself with similar commands
to the above. If using pip worries you, the one-liner

sudo apt install python3-opencv

may suffice. The author is pretty sure this worked under Ubuntu 22.04
too.

Under macOS, I installed Python 3 using Homebrew then typed the
same pip3 commands as for Linux, except that I installed

pip3 install opencv-contrib-python-headless

This “headless” version avoids installing old versions of some libraries
used by OpenCV. If you install “headless” and find things are missing,
de-install it and then install opencv-contrib-python as for Linux.

To be able to use xv and other Linux-like graphical utilities mentioned in
the laboratory scripts, you need to download and install XQuartz, Apple’s

http://www.ee.surrey.ac.uk/Teaching/Unix/
http://linuxcommand.org/
https://brew.sh
https://www.xquartz.org

AN INTRODUCTION TO COMPUTER VISION 23

X-server. You need to start XQuartz running before using xv; the author
has it started automatically whenever he logs in. The source code of xv
is on Github and is easy to build yourself if you install Homebrew and
then cmake; speak you your friendly neighbourhood lecturer during a lab
session if you run into problems installing it.

Under Windows, although I haven’t done this myself, you should be
able to install Python3 and pip, then follow the same route as for Linux.

If you try this and run into problems, do speak to a demonstrator during
a lab session or again speak to your friendly neighbourhood lecturer. If
you find one of the recipes above is no longer right and you have updated
instructions, please let me know so that I can amend these notes. You will
get an acknowledgement!

1.9 Further reading

In such a fast-moving subject area, printed textbooks are almost always
out of date — and this is especially the case in the use of machine learning
in computer vision. That is why these notes provide a comprehensive
overview of the material. A couple of widely-recommended texts are:

* Richard Szeliski’s book Computer Vision: Algorithms and Applications
(Springer, 2010).
This is intended for graduates with some vision experience; it is not
really suitable for newbies.

* Roy Davies’ book Computer and Machine Vision: Theory, Algorithms,
Applications, Learning, (5 edition, Academic Press, 2017).
This is a good book but unfortunately one you would have to buy. For
people on campus, both it and the third edition are in the Library. It
would be fine to use the older edition.

Regarding computer vision programming, the best places to look are:

* Google. Whatever you're trying to do and are struggling with, someone
has probably ran into the same difficulty. You'll find useful questions
and answers on sites such as Stack Overflow. Remember though that
you should not paste code directly from such places into your
coursework without attribution as that is plagiarism, an academic
offence.

¢ The official OpenCV documentation. Be sure to look at the right version.
A recipe for finding the version is shown in the previous section.

e Jan Erik Solem’s book Programming Computer Vision with Python
(O'Reilly, 2012). Rather than OpenCV, this book explains how to use
Python, numpy and scipy to carry out computer vision tasks. I must
admit to rather liking it.

You might also be interested to look at some useful online resources:
* CVonline, a collection of tutorials and papers which explain techniques;

e HIPR2, a compendium of interactive demonstrations of mostly low-level
vision techniques.

https://github.com/jasper-software/xv
https://brew.sh/
http://szeliski.org/Book/
https://www.amazon.co.uk/Computer-Machine-Vision-Algorithms-Practicalities/dp/0123869080
https://www.amazon.co.uk/Computer-Machine-Vision-Algorithms-Practicalities/dp/0123869080
http://opencv.org/documentation.html
http://programmingcomputervision.com/downloads/ProgrammingComputerVision_CCdraft.pdf
http://www.cvonline.com
http://homepages.inf.ed.ac.uk/rbf/HIPR2/hipr_top.htm

2
The Human Visual System

Before considering computer vision in any detail, it is instructive to look at
some of the capabilities of the human visual system. We shall start with the eye
itself, which is fairly well understood, and then move on to what we know of
the processing performed by the brain. Note that the content of this chapter
is to aid your understanding; it is not examinable.

2.1 The eye

Optically, there are close analogies between a camera and the eye. The
front of the eye is covered by the cornea, which performs about 80% of
the focusing that is needed. Behind that is the lens, whose shape and
hence optical power can be varied a little by ciliary muscles, in much the
same way that a camera can be focused. This focusing ability is known
as accommodation. A young individual with no optical defects can focus
easily down to a near point of about 10 cm, though as this individual ages,
accommodation degrades and the near point moves further away — this is
known as becoming long-sighted and its medical term is presbyopia. People
who cannot focus on infinity — a common trait among people who have
done a lot of close work when young — are short-sighted (the medical
term is myopia) and generally wear spectacles or contact lenses all the
time.

Around the lens lies the iris, which controls the area of the lens through
which light is able to enter, commonly known as the pupil. Pupil sizes
generally lie in the range 3-7 mm and correspond to about a five times
change in pupil area and hence the amount of light allowed into the eye.

The back of the eye, the retina (Figure 2.1), is covered with a layer of
light-sensitive cells that is about the thickness of tissue paper. There are
two main types of cells, known as rods and cones. The rods are responsible
for vision in low light (< 1 cd/m?), while the cones require more light to
work. It is generally believed that there are three types of cones, having
pigments that are more responsive in the red, green and blue parts of the
spectrum (Figure 2.2), and this is what gives us colour vision. The red-,
green- and blue-sensitive cones occur roughly in the ratio 12: 6 : 1, so
the eye is significantly less sensitive to blue light than to green or red, as
Figure 2.2 shows. It is postulated that this is because humans evolved in a
region where the staple diet was red berries growing amongst green foliage,
though there is no way of verifying this. The presence of three different

Visual axis

Blind spot ~ 40°

‘
Fovea ‘

Optic nerve

Figure 2.1: A cross-section through the
human eye (from [Cornsweet, 1970]
p137). The angles marked around

the retina correspond to the angles in
Figure 2.4.

types of cone explains why some people are colour-blind: e.g., there is a
minor defect on the male chromosome that affects the pigmentation of the
red- and green-sensitive cones in about 10% of men.

The rods are more sensitive in the green—blue part of spectrum than
cones (Figure 2.3), presumably because of the need to retain some vision
functionality in moonlight, which is bluish in colour. This also explains
why ships normally illuminate their bridges with red light at night: it
avoids destroying the dark-adaption of the rods.

0.20

0.18 |- N

0.16 - N

0.14

0.10

0.08 |- -

0.06

0.04 - N

proportion of quanta absorbed by the visual pigment

0.02

.00 | [T :
400.0 450.0 500.0 550.0 600.0 650.0

wavelength (nm)

0

The eye contains about 50,000 cones and about 120 million rods, about
twenty times more — though groups of about 120 rods are ‘wired together’
into a single ganglion cell (see below) to amplify the faint responses that
result from low illumination, while only about 6 cones converge into one
ganglion. The distribution of rods and cones over the eye is far from
uniform. Both rods and cones are roughly circular in cross-section and
hence tend to pack together somewhat more like hexagons then rectangles
— unlike, say, the sensors on most CCD cameras. In humans and most
other predators, the cones are concentrated into a region known as the
fovea centralis (Figure 2.1 and 2.4), which is almost rod-free. (Some birds,
for example, have more than one fovea.) In humans, the fovea subtends
about 2° of visual angle and contains about 1% of the cones. A higher
concentration of sensors means that the resolving power is higher, i.e. that
greater detail can be perceived, and that colour discrimination is better.
Without realising it, people turn their heads and eyes so that incoming light
is focused on the fovea and hence the perception of detail (and colour) is
greatest (fixation). The better light-gathering efficiency of the rods around

THE HUMAN VISUAL SYSTEM 25

Figure 2.2: The relative spectral sensitiv-
ity of cones (adapted from [Cornsweet,
1970] p171, where it is reported that the
subject from which these measurements
were taken was about three times more
blue-sensitive than an average subject).

26 COMPUTER VISION

8.0

log relative sensitivity

2.0

0.0

400.0

-10°

450.0

500.0 550.0
wavelength (nm)

600.0

650.0

1.6 -

14

1.2

1.0 |-

0.8 |-

number per mm?

0.6 |-

0.4 -

0.2 -

——rods
—cones

’\/\/\/\/\/

0.0 =
—80.0 —6!

|
0.0 —40.0 —20.0 0.0

|
20.0
perimetric angle (degrees)

40.0 60.0

|
80.0

Figure 2.3: The spectral sensitivity of
rods (adapted from [Cornsweet, 1970]
p146)

Figure 2.4: The distribution of rods
and cones on the retina (adapted
from [Cornsweet, 1970] p137). The
angles correspond to those marked on
Figure 2.1.

the periphery of the fovea is the reason that star-gazers are recommended
to look ‘above’ stars rather than directly at them. Moreover, when one
goes into the dark, it takes cones about six minutes to become maximally
sensitive and rods about 30 minutes — and this is one reason that star-
gazing is more effective in places without street lights and well away from
roads.

2.2 From the eye to the brain

The electrical signals generated by photons hitting the rods and cones flow
through four different types of cells (amacrine, bipolar, horizontal and
ganglion cells), and the axons of the latter form the optic nerve which runs
from the eye into the brain. The place where the optic nerve leaves the
eye contains no rods or cones and hence leaves a blind spot (Figure 2.4).
Fortunately, this is not apparent to us, partly because of fixation and partly
because the brain appears to interpolate over the blind spot.

The way in which the signals from the retina converge into a ganglion
cell provides an excitatory centre and inhibitory surround (Figure 2.5(a))
which, as we shall see when we consider convolution, is similar to some im-
age operators. This phenomenon explains the Hermann grid (Figure 2.5(b))
in which grey ‘ghosts’ appear in the intersections of white ‘corridors,” and
Mach banding, an illusion that affects shaded objects in computer graphics
near to illumination edges. The same effect causes simultaneous contrast,
in which the apparent brightness of an area is affected by the brightness
of its surroundings, and is thought to help continuity, where shapes that
have incomplete boundaries are ‘filled in’ by the brain.

The optic nerves travel principally from the eyes to regions of the brain
known as the lateral geniculate nucleus (LGN), though about 10% go to the
superior colliculus, which controls eye movement. The LGN also receives
signals from other parts of the brain, such as the visual cortex and the
thalamus. There is one LGN in each half of the brain, and each of them
comprises six distinct layers. Each eye sends half of its signals to the left
LGN and the other half to the right LGN. The layers of the LGN retain the
relationship between rods and cones on the retina, so we can think of it as
working on images.

2.3 Inside the brain

About 1.5 million axons travel from the LGN to the region of the visual
striate cortex known as V1 (again, there is one in each half of the brain).
The cortex contains about 250 million neurons and is responsible for most
of the higher-level processing in the human visual system. Cells in the
V1 region respond to specific aspects of images, such as orientation, edge
and motion (Hubel and Wiesel won the Nobel prize for identifying this
in 1950); for this reason, cells in the striate cortex are often known as
feature detectors, and this is one of the reasons that vision researchers have
expended a great deal of energy in developing edge, corner and feature
detectors. Clearly, just like the LGN, cells in this region must relate to
specific points in the retina. Interestingly, 8-10% of the cells are connected

THE HUMAN VISUAL SYSTEM 27

(a) The excitatory centre is surrounded by an
inhibitory region

(b) One consequence of this is the Hermann
grid, where grey spots are apparent at the
junctions of the white lines

Figure 2.5: The excitatory—inhibitory
nature of ganglion cells and its con-
sequences

28 COMPUTER VISION

to the fovea even though it corresponds to about 0.01% of the number of
cells on the retina. Each V1 transmits information to two pathways:

The dorsal stream goes through visual area V2, on to V5 and thence to the
posterior parietal cortex. This stream is sometimes called the “where
pathway” or “how pathway” as it is associated with motion, the repres-
entation of object locations, and control of the eyes and arms.

The ventral stream also goes through visual area V2 then through visual
area V4 and on to the inferior temporal cortex. This stream is sometimes
called the “what pathway” as it is associated with form recognition,
object representation and the storage of long-term memory.

The four regions of V2 appear to produce a map of the visual world. As
in V1, cells are tuned to properties of the visual field such as orientation,
spatial frequency, and colour; however, the responses of many V2 neurons
are also modulated by more complex properties, such as the orientation
of illusory contours and whether the stimulus is part of foreground or
background.

Beyond V2, detailed knowledge of the processing is less certain. It
is thought that V3 plays a rble in the determining global motion in the
visual signal while V4, like V1, is tuned for orientation, spatial frequency,
and colour. However, V4 is tuned for more complex object features than
V1, for example simple geometric shapes (but not faces). V5 is a region
of extrastriate visual cortex which is thought to play a major réle in the
perception of motion, the integration of local motion signals into global
percepts and the guidance of some eye movements.

There is some knowledge of where the processing of particular types of
features takes place in the brain, usually acquired from studies of people
who have suffered oxygen starvation in strokes or road traffic accidents,
resulting in the death of specific brain regions. For example, the ability to
store and recognise faces appears to be centralised in one region of the
brain, and similarly the conversion of 2D knowledge of shapes into 3D
recognition appears to take place in a specific region. There are theories
as to some of the mechanisms involved but it is fair to say that we are
far from a complete understanding — certainly too far for us to develop
computer vision systems simply by simulating what happens in the brain.
There are a few Nobel prizes to be won before that becomes a realistic
possibility.

3
Vision Software

This chapter first discusses the nature of pixels and images and describes the
most common representations of colour. It then shows how images can be
manipulated by software. A program that calculates some simple statistics
and a histogram are presented and the result of using it interpreted. Finally,
a complete system that uses colour histograms to recognize different types of
produce is presented.

3.1 Introduction

In order to do any computer vision, you need some software. There is
actually a lot of computer vision software on the Web, though much of it is
quite difficult to get to grips with. One of the easiest to use is a GUI-driven
package called ImagelJ. Freely available and written in Java (so it runs
on Windows, Linux and the Mac) and intended for use in the biomedical
area, ImageJ is best thought of as a kind of ‘photoshop for scientists.” If
you want to play with some of the simpler operators to get a feel for what
they do, ImageJ is ideal for the job. It can also be used for serious science,
and it supports plug-ins that allow its functionality to be extended; with
these, some fairly sophisticated things can be achieved.

Most people working in computer vision use one of two environments,
Matlab or OpenCV. Matlab is commercial software; although it is used in
some modules in CSEE, the author prefers to steer clear of it. As mentioned
in Chapter 1, OpenCV is a library of routines which you call from your own
code to perform computer vision tasks. It is written in C++ with ‘wrappers’
for other languages, and Python is probably the most widely-used one.
OpenCV is intended for real-time applications (so Python is arguably not
the best language to be using) but its ease of use and expressiveness make
it easy to produce applications. You are meant to make use of OpenCV in
your experiments to gain practical experience with it.

Although OpenCV is widely used in research and development, you
need to realize that many of the algorithms it uses have been tweaked to
run quickly. In order to check that its results are as expected (and to find
where they are not, the author usually illustrates these lecture notes with
code that doesn’t make use of it, instead relying on the capabilities of only
numpy and scipy. This non-OpenCV code is bundled into a Python module
called EVE (for Easy Vision Environemnt) and you can pick up a copy of it
from the web. Note that he fiddles with it on an almost daily basis.

https://imagej.nih.gov/ij/
http://vase.essex.ac.uk/software/eve.html

30 COMPUTER VISION

X increasing —

o1 2 3 4 5 6 7 8

0lo o 0 o0 o0 o0 o0 00
110 0 0o 0 255 0 0 0 O
., 2|0 0 0 255 255 255 0 0O O
£ 3|0 0 255 255 255 255 255 0 O
8 4/0 0 0 0 255 0 0 0 0
£5/00 0 0255 0 0 0 0
I’ 6|0 0 0 0 255 0O 0 0 O
7/0 0 0 0 255 0 0 0 O
8/o o 0o 0 255 0 0 0 0
9/o 0 o 0 0o 0 0 0 O

(a) Values of pixels

3.2 Images and pixels

Before setting out on our exploration of computer vision software, it is
important to have a grasp of some of the fundamentals. For that reason, let
us start by considering what is meant by an image: for it to be processed by
a computer, a good working definition is a regularly-sampled, rectangular
grid of pixels — see Figure 3.1. (You’ll see why the white values are all
255 shortly.) The “rectangular” part means that pixels are arranged as
rows and columns in a grid as opposed to hexagons, even though the latter
organisation is better at tessellating a plane: although a few people have
explored hexagonally-sampled images, they are much difficult to work
with and don’t appear to yield any additional insights. The “regularly-
sampled” part means that pixels are all the same size and shape, and are
equally spaced along the lines that make up a digital image. We shall
generally assume that pixels are square, the same dimensions in the x and
y directions, as illustrated in Figure 3.2.

Figure 3.1 shows an image of an arrowhead that points vertically up-
wards; note how the origin is at the top left corner and that x increases
along the lines while y increases down the columns. The x and y indices
into the table start at zero in deference to C-like programming languages.
The figure also shows how those values appear when displayed as an
image.

This definition of an image means that we also need to be sure we
know what is meant by ‘pixel.” Most people think of a pixel as a sampled
8-bit value, i.e., one with a value in the range 0-255. The ‘8 bits’ results
principally from being good enough to fool the human eye — it can identify
about 64 different shades of grey — and representable in a single byte;
good quality cameras and scientific sensors now almost always digitise
pixels to 16 or more bits so this notion that pixels fit into 8 bits is slowly
disappearing.

Representing pixels and images

Critical to any software is the set of data structures it uses — and for
computer vision, this means the representation of pixels and how they

(b) Resulting image

Figure 3.1: A digital image of an upward-
pointing arrowhead

(a) Original image with pixels marked

(b) Resulting pixels

Figure 3.2: Each pixel in an image is
the average value of a region of the real
world image

are combined into an image. OpenCV works almost exclusively with
integer pixels of various precisions, on the basis that integer operations
are faster than floating-point ones. (They aren’t always, it depends on
your hardware.) Conversely, Python’s numpy and Matlab favour floating-
point numbers, even though images are naturally digitised into integer
values. This is because many things one does to an image naturally yield
floating-point numbers and, more critically, because it avoids having to
worry about rounding except when writing out pixels. If one uses an
integer representation for pixels, rounding has to be considered every time
a pixel is manipulated. This is onerous if one has to do it consistently, and
can lead to a loss of precision. The author contends that it is better to
get an accurate result slowly than an inaccurate one quickly! In practice,
OpenCV requires its images to be have particular representations for some
routines and this will bite you from tine to time — this is why EVE uses a
consistent representation throughout.

In Python, you might think that the natural way to represent an image
is as a series of linked lists, with each line of the image being a separate
linked list and all the lines combined into another linked list. You would
then be able to write code like

arrowhead[1][2] = 255

Unfortunately, this is very slow to run. For images of the size captured by
modern digital cameras, the time taken to walk along the linked lists to
locate the right pixel quickly dominates processing. A more appropriate
representation is needed, and in the Python world this is offered by the
numpy extension. It provides arrays, chunks of memory which are indexed
efficiently by sets of subscripts, so that

arrowhead[1,2] = 255

is as quick to execute as it can be (in Python). Note the difference in the
way subscripts are written for a list of lists and a numpy array.

Compiled languages such as Fortran (much maligned by computer
scientists of the past but now a really impressive language featuring classes,
operator overloading and whole-matrix operations that work well on multi-
processor hardware) have multi-dimensional arrays built into them. C
(and hence C++) doesn’t support them natively but, with a little care, one
can create structured data types or classes that are essentially as efficient
as those in Fortran. The same is true for Java: they are not quite supported
natively but the implementation is pretty efficient.

The basic way of representing a monochrome (grey-scale) image is as
shown in Figure 3.1: a matrix (a 2D array) of values. When we talk about
the pixels in that arrowhead image, one might say that “the value of the
pixel at (4,1) is white”, using the x and y locations to identify the pixel
in question. However, the indices of a matrix are row and then column, so
that pixel will be indexed in Python as [1,4] rather than [4,1]:

>>> print (arrowhead[1,4])
255

>>> print (arrowhead[4,1])
0

>>>

VISION SOFTWARE 31

32 COMPUTER VISION

It is very important that you get to grips with this. The code presented
later in this chapter should give you further insight. However, before we
start looking at code, it makes sense to understand how colour images are
represented.

Representing colour

Colour images from cameras normally represent pixels as a combination
of red, green and blue, so-called RGB images. These are consistent with
the types of cone in the human eye (Section 2.1). Yet RGB is by no means
the only colour representation. Images destined for printing are based
around the ‘subtractive primaries’ of cyan, magenta and yellow inks (the
complementary colours of red, green and blue respectively) with black
regions being darkened by the addition of black ink — this is known as
the CMYK colour model. If you look at a colour image in a newspaper
(Figure 3.3), you'll see there are separate cyan, magenta, yellow and black
dots.

Another common image representation is YIQ, used in NTSC analogue
colour television, where the Y channel is grey-scale (which is what black-
and-white televisions display) and I and Q are two colour difference signals
which are processed by the television receiver to reconstruct RGB:

Y 0.299 0.587 0.114 R
I |=10.600 —0.274 -0.321 G
Q 0.211 -0.523 0.311 B
R 1.000 0956 0.619 Y
G |=11000 -—0.272 —0.647 I
B 1.000 —1.106 1.703 Q

The colour difference signals are actually sampled at half the rate of the Y
signal because the eye is less sensitive to changes in colour than to changes
in intensity (see Chapter 2). This same phenomenon is also exploited in a
similar way in the JPEG image format, another reason for it being a poor
choice for computer vision.

A colour model that is better-suited to analysis is HSV (‘hue-saturation—
value’), which introduces terms akin to those that an artist might use when
painting [Smith, 1978; Foley et al., 1990]. The best way to think of HSV
is to take a cube with the R, G and B values running along three sides and
then to cut the top off the cube, giving a hexagonal shape filled with the
colours in the colour wheel (Figure 3.4). If R, G and B are the red, green
and blue values of a single pixel, they can be converted to HSV using the
following series of transformations. Firstly, calculate the maximum and
minimum of R, G and B:

V = max(R,G,B)
m = min(R, G, B)

Figure 3.3: Magnified newsprint, show-
ing that an image is made up of dots of
coloured ink

~

(a) A colour wheel, showing the ad-
ditive primaries, their combinations
and complementary colours

(b) HSV colour representation

Figure 3.4: Representing colour as hue,
saturation and value (taken from a
paper)

https://www.researchgate.net/publication/284698928_Shifting_Colors_to_Overcome_not_Realizing_Objects_Problem_due_to_Color_Vision_Deficiency/figures?lo=1
https://www.researchgate.net/publication/284698928_Shifting_Colors_to_Overcome_not_Realizing_Objects_Problem_due_to_Color_Vision_Deficiency/figures?lo=1

From this, calculate the chroma, C = V —m. Then calculate the hue as

undefined cC=0

. G%B mod6 V=R
H=060"x14 ."»

= t+2 V=G

RE 14 V=B

to give H in degrees. We calculate S as

0 C=0
S=1¢]
v otherwise

There is a single OpenCV routine that converts between different colour
models.

All of the above colour representations are known as ‘uncalibrated’
because they are based purely on the data coming from the camera. There
are also ‘calibrated’ colour spaces (with names like XYZ, Lab, and Luv),
some of which make a fair job of matching the perceptual differences
detected by the human visual system — but calibrating a capture system is
far from straightforward. There is not time to cover all of these, and they
are somewhat specialized, but you should be aware that they exist.

It is often easiest to think of a colour image as a series of colour “planes,”
as shown in Figure 3.5(a). Here, r and R represent the last two pixel values
of the first line of the red channel, g and G those of the green channel and
b and B those of the blue. If we represent the colour channel by c then,
bearing in mind the discussion above, it would be indexed as

image[c,y,x]

However, this is not the representation we have ended up using for images
in Python/numpy, OpenCV or Java; instead, it is Figure 3.5(b) in which
the y and x subscripts index the row and column in the image and c then
indexes the channel:

imagely,x,cl

Perhaps the best way to fix this representation in our minds is to see it
used in real code, so let us now do that.

3.3 Coding up algorithms

Calculating the mean of an OpenCV image

The computer vision equivalent of a “hello world” program is arguably
one that calculates mean of an image. Getting it working involves not
only getting the hang of editor and compiler (or IDE) but also reading in
images, so you have to get to grips with quite a lot of ‘infrastructure’ to
get it working.

The mean (“average”) of a set of numbers is found by adding them up
and dividing them by the size of the set. If im is a colour OpenCV image
represented in Python as a numpy array, then suitable code is:

VISION SOFTWARE 33

| bB

R

(a) A colour image can be thought of as
comprising red, green and blue channels

(b) The representation of a colour image
in OpenCV and numpy, a 2D array of 1D
pixels

Figure 3.5: Representations of colour
images in software

34 COMPUTER VISION

def mean (im):
"Calculate the mean of the image im."
ny, nx, nc = im.shape
total = 0
for y in range (0, ny):
for x in range (0, nx):
for ¢ in range (0, nc):
total += im[y,x,c]
return total / ny / nx / nc

The def line declares a procedure. The remainder of the line lists its para-
meters and the trailing colon introduces the procedure body. The quoted
string provides minimal procedure documentation, and the remainder
of the code is the procedure body. Indentation is used to indicate loop
structure. The range function provides a list of integers in the range zero
to (but excluding) its second argument, and the other lines of code accu-
mulate the sum of all the values in the image in total and then divide it
by the number of pixels in the image. The mean is returned as the value
of the function.
The equivalent C++ code is quite similar:

// ave -- return the mean of all pixels of an image
double ave (Mat im)
{

int ny, nx, nc, y, X, Cc, V;
double total = 0.0;
Vec3b pixel;

ny = im.rows;
nx = im.cols;
nc = im.channels();
for (y = 8; y < ny; y++) {
for (x = 0; x < nx; x++) {
pixel = im.at<Vec3b>(y, x);
for (c = 0; ¢c < nc; c++) {
v = int (pixel[c]);
total += v;

}

return total / ny / nx / nc;

b

with roughly a one-for-one mapping of lines of Python code to C++ code.
To cope with the fact that the image may be of any data type (unsigned
char, int, etc.), templated code can be used to return the values of all
channels of a pixel, then the innermost loop steps along that; this is hidden
behind the scenes in Python.

As with all programming languages, the order of the loops is important
when accessing image data. The order used here is the most efficient in
Python and languages derived from C (C itself, C++, C#, Java), where the
last subscript needs to vary fastest. For languages with a different heritage
(e.g., Fortran, Matlab), the first subscript should vary fastest. Why should
this be so? It is because of the order in which the array elements are stored
in memory: accessing sequential memory locations maximises cache hits,

This C++ code is interesting. My natural
way of working with images is to use
float representations because I need
the dynamic range of floating-point
representations but not the extended
precision of a double. My first attempt
at this code declared total as float but
the resulting code yielded the wrong value
for the mean! 1 had to remind myself
what was wrong with it.... if you think
you know why, do speak to me in a lab
session about it. There are no marks for
understanding why but you will get a
significant number of brownie points if
you can figure it out correctly.

reduces page faults, and so on.

3.4 Histograms and their manipulation

Having seen how to work through the pixels of an image, let us move on
to what is probably the most fundamental way of characterizing an image,
its histogram. This is a graph, usually drawn as a bar-chart, which shows
how many pixels have each possible grey level value. With just a little
experience, a glance at a histogram will tell a person whether an image
is under- or over-exposed (which is why good digital cameras are able to
show them), how best to threshold an image, and so on. For example, three
similar photographs that demonstrate under-, over- and good exposure
are shown in Figure 3.6 along with their histograms. It is clear from the
figure that under-exposed images have a preponderance of pixels with low
grey-level values while over-exposed images have many pixels with high
grey-level values. Images that are exposed correctly tend to have more
pixels corresponding to mid grey-level values and fewer pixels near the
extrema of the histogram.

How does one compute a histogram? Clearly, when a pixel has the value
v, some corresponding counter needs to be incremented by unity. The
easiest way to do this is to have an array of the same size as the number
of possible grey levels, then to use v as an index into it. Beyond that,
the algorithm is similar to the one for calculating the mean in the way it
accesses pixels.

A suitable Python routine is presented in the following complete pro-
gram. You might be interested to learn that it is presented using a “literate
programming” idiom [Knuth, 1984]. The author has written software
which pulls the program source code out of the (BIX) source of this docu-
ment, so that the code you read here is guaranteed to be identical to the
program one executes.

It is suggested that you study this program carefully: as well as having
a routine to calculate the histogram, it also has code to plot it and display
the image. The code is clever in that it re-sizes large images down to
a reasonable size before display; you may need to do similar re-sizing
yourself at some point. Finally, the code has no knowledge of the filename
built into it, instead taking one or more file filenames from the command
line — you will see this approach used a lot in the laboratory sessions.

(summarize.py) =

1 #!/usr/bin/env python3

VISION SOFTWARE 35

> "Summarize_the_content_of_images_by_showing_their_statistics_and_histogram"

import sys, cv2, numpy, pylab

s def iround (x):
9 "Convert_x_to_the_nearest_integer."
10 return int (round (x))

36 COMPUTER VISION

‘0%
3 i
>
22| 1
g
1 i
0 T T T T
0 50 100 150 200 250
; grey level
(a) Well-exposed (b) Histogram of (a)
10%
6 - L
4l]
g
g
g
2 i
0 T T T T
0 50 100 150 200 250
grey level
(c) Under-exposed (d) Histogram of (c)
-10°
2
rﬁ—a-wﬁ |
I 5
g
!
Zf
0 50 100 150 200 250
grey level

(e) Over-exposed

(f) Histogram of (e)

Figure 3.6: Histograms corresponding to
differently-exposed images

VISION SOFTWARE 37

def mean (im):
"Calculate_the_mean_of_the_image_im."
ny, nx, nc = im.shape
total = 0
for y in range (0, ny):

for x in range (0, nx):
for c in range (0, nc):
total += im[y,x,c]
return total / ny / nx / nc

def hist (im):
"Return_the_grey-level_histogram_of_an_image, ready_for_plotting."
The maximum image value that we support.
maxgrey = 256

Create the values for the abscissa (x-axis).
ab = numpy.ndarray (maxgrey)
for i in range (0, maxgrey):

ab[i] = 1

Create the histogram array and set it from the image.
h = numpy.zeros (maxgrey)
for y in range (0, ny):
for x in range (0, nx):
for c in range (0, nc):
v = im[y,x,c]
hivl += 1

Return the x and y values.
return ab, h

def plot_hist (x, y, fn):
"Plot_the_histogram_of_image_fn."
Set up pylab.
pylab.figure ()
pylab.xlim (0, 255)
pylab.grid ()
pylab.title ("Histogram_of_" + fn)
pylab.xlabel ("grey_level")
pylab.ylabel ("number_of_occurrences")
pylab.bar (x, y, align="center")
pylab.show ()

2
Main program.
3w
Set-up.

maxdisp = 800

Ensure the command line is sensible.

if len (sys.argv) < 2:
print ("Usage:", sys.argv[0], "<image>...", file=sys.stderr)
sys.exit (1)

Process the files given on the command line.
for fn in sys.argv[1:]:
Read in the image and print out its dimensions.

38 COMPUTER VISION

69 im = cv2.imread (fn)
70 ny, nx, nc = im.shape
print (fn + ":")

2 print ("__Dimensions:", nx, "pixels,", ny, "lines,", nc, "channels.")
74 # Calculate and output some important statistics.
75 print ("__Range: _%d_to_%d" % (im.min (), im.max ()))

76 print ("__Mean:_%.2f_(using_mean)" % mean (im))

print ("__Mean:_%.2f_(using_numpy_method)" % im.mean ())
78 print ("__Standard_deviation: _%.2f" % im.std ())
80 # Work out and display the histogram.
81 x, h = hist (im)
82 plot_hist (x, h, fn)

84 # For display, ensure the image is no more than maxdisp pixels in x or y.
if ny > maxdisp or nx > maxdisp:

86 nmax = max (ny, nx)

8 fac = maxdisp / nmax

88 nny = iround (ny * fac)

89 nnx = iround (nx x fac)

90 print ("__[re-sizing_to_%d_x_%d_pixels_for_displayl" % (nnx, nny))

91 im = cv2.resize (im, (nnx, nny))

93 # Display the image.

94 cv2.imshow (fn, im)

95 cv2.waitKey (0)

9% cv2.destroyWindow (fn)

97 print ()

S e I
w0 # End of summarize.

T e e

The example code presented above works fine for colour images. How-
ever, when OpenCV encounters a monochrome (single-channel) image,
the representation changes: rather than being a data structure indexed
by the three values discussed above, y, x and c, the c part disappears and
the image needs to be indexed by only two values, y and x. This means
that one cannot easily use a consistent way of indexing, and some coding
callisthenics are required, a situation the author finds profoundly irritating.
There is a work-around this in EVE.

3.5 Contrast-stretching and an improved histogram
routine

Our first attempt at a histogram routine doesn’t work well if an image has
16-bit pixels, both because 65,536 points are difficult to draw on a graph
and because most of the grey level bins would have a count of zero. More
sophisticated software will scale the available range of grey levels into a
more sensible number of bins. We shall do this in two stages.

If an image’s histogram is ‘bunched up’ into a narrow range of grey levels
or there are more grey levels than a display can cope with, its appearance
can be improved by contrast stretching. This involves finding the lowest

http://vase.essex.ac.uk/software/eve.html

and highest grey-level values in the image and then linearly scaling them
to have the values zero and 255 (typically, because that is what computer
displays support). If the lowest value in an image is P_,;, and the highest
P_..x and we want to scale them to V;, and V,,,, respectively, then a few
moments’ reflection will show that each pixel P(x, y) should be changed
using the formula

)P(X:y)_Pmin

Pmax _Pmin

(Vmax - Vmin + vrnin (3 1)

The contrast-stretching algorithm tells us how to re-scale the grey-levels
linearly between any limits. Armed with this, we can easily write a his-
togram routine that works for any number of bins; the following code is
adapted from EVE and should work with colour OpenCV images, albeit
quite slowly.

(Calculate the histogram) =

1 def histogram (im, bins=64, limits=None):

2 """Work out the histogram of the image 'im'. The histogram is
accumulated in 'bins' bins. By default, these lie between the

4 minimum and maximum values of 'im' but other extrema can be
provided in 'limits', a list comprising the low and high limits
to be used. Values outside these extrema are ignored."""

8 # Find the extreme values in the image.
9 if limits is None: limits = [im.min(), im.max()]
10 lo, hi = limits

12 # Create the arrays to hold the values to be plotted.
numpy.zeros (bins)
numpy.zeros (bins)

Q =
n o

16 # Fill the x array with the centres of the bins.
17 inc = (hi - lo) / (bins - 1)

18 for i in range (0, bins):

19 ali] = lo + 1 * inc

21 # Accumulate the histogram.

22 ny, nx, nc = im.shape

23 for y in range (0, ny):

2 for x in range (0, nx):

25 for ¢ in range (0, nc):

26 v = int ((im[y,x,c] - lo) / (hi - lo) * (bins-1) + 0.5)
27 if v >= 0 and v < bins:

28 hiv] += 1.0

30 # Return the abscissa and ordinate arrays.
31 return a, h

The three lines in the innermost loop do all the interesting work, scaling
the pixel value into the number of available bins using (3.1) and then
incrementing the appropriate element of the histogram.

VISION SOFTWARE

39

40 COMPUTER VISION

3.6 Histogram equalisation

The best-known image processing technique is arguably histogram equal-
isation. This is a non-linear mapping of grey levels intended to improve
the appearance of low-contrast regions of an image: it works by stretching
out regions of similar grey value and compressing regions where few pixels
have distinct grey levels. This might seem difficult to perform but turns
out to be quite straightforward.

Despite being so well-known, serious vision work avoids histogram
equalisation because it is ad hoc and dangerous: the non-linear mapping
involved wreaks havoc with the pixel distribution (the ‘shape’ of the his-
togram), making impossible any subsequent processing based around an
understanding of the image formation processes involved. You have been
warned!

If we think of the code that calculated the histogram, we end up with
an array h where, for a subscript g, it holds how many pixels have the grey
value g. To perform histogram equalisation, we first convert the histogram
into the cumulative histogram; after this stage, each element of h holds
how many pixels hold a value of g or lower.

(Calculate a cumulative histogram) =

def cumulative_histogram (im, bins=256, limits=None):
2 "Find_the_cumulative_histogram_of_an_image"
a, h = histogram (im, bins=bins, limits=limits)
4 for i in range (1, len(h)):
h[i] = h[i] + h[i-1]
6 return a, h

The second and final stage of histogram equalisation is to use the cumu-
lative histogram as a look-up table. We scan over the image, pixel by
pixel, and for a pixel whose value is g, we simply replace it by h[g1; this
performs the necessary non-linear mapping alluded to above.

(Look up each pixel in a table) =

def lut (im, table, limits=None):

2 "Look_up_each_pixel_of_an_image_in_a_table"
if limits is None: limits = extrema (im)

4 lo, hi = limits
ny, nx, nc = sizes (im)

6 bins = len (table)

7 for y in range (0, ny):

8 for x in range (0, nx):

9 for c in range (0, nc):

10 v = (im[y,x,c] - lo) / (hi - lo) * (bins-1)

11 im[y,x,c] = table[int(v)]

The effect of histogram-equalising the image in Figure 3.6(b) is shown in
Figure 3.7.

3.7 Content-based image retrieval using histograms

Anyone who has tried to find an image on the Web will have realised that
the major search engines index images by the text that surrounds them

VISION SOFTWARE

0%
2 b i
g
g
!
& 1H N
0] T T T T T
50 100 150 200 250
grey level
(a) Histogram-equalised image (b) Histogram of (a)

or links to them. It would be much better if an image could be found
by presenting an example of something and saying effectively “find me
images that look like this.” This is an active area of research known as
content-based image retrieval (CBIR) or sometimes query by image content
(QBIC). Let us develop a simple CBIR program, one that similar to the
state of the art in the early 1990s.

A reasonable way of characterising an image, so the argument goes, is
through the colours it contains, i.e. its histogram. If we find images with
similar histograms, they should look similar.’ But how can we determine
the similarity of histograms? The most obvious way is simply to find the
difference between them — although as these differences can be positive
or negative at different places in an image, it is wise to take the absolute
value or the square of the difference. In fact, it is normal in most of science
and engineering to use the sum-squared difference

> (H (i) —Hy(i) (3.2)

i

so this is one way to determine the similarity of histograms H; and H,.

The problem with the sum-squared difference is that a change in the
illumination of the scene (say, by the sun going behind clouds) makes
the difference between histograms large. We really need something that
works on the shape of the histograms rather than the actual values. There
is something that does this but to get to how it works, we’ll need remind
ourselves of a little more statistics first.

We are all familiar with the mean of a set of data — in fact, we con-
sidered how to calculate the mean of an image earlier in these notes. The
spread of values in a set of data is measured by its standard deviation,
closely related to the width of any peak in a histogram.

Because we’re working in the image realm, let us consider how to
calculate the standard deviation of an image P; the basic approach is the
same for any dataset though. However, we cannot just calculate

1

m £ (P(X,y)—(P))

Figure 3.7: Result of histogram-
equalising the image in Figure 3.6(c)

! You might like to reflect on these
statements before proceeding.

41

42 COMPUTER VISION

where (-) denotes averaging: this must come out to be zero because of
the definition of (P). However if we calculate the mean squared deviation
from the mean, we end up with the variance, the square of the standard

deviation:
2].
o

= o= 2 (P(x,y) = (P)° (3.3)

x,y

This makes all the variations from the mean non-negative, and so o2 will
be greater than zero unless every pixel has the same value. The means
and standard deviations of the images in the differently-exposed images
shown in Figure 3.6 are presented in Table 3.1.

A straightforward implementation of (3.3) involves two passes through
all the pixels of an image, the first to calculate the mean and the second
to sum the squared deviations from it — rather pesky:

(Calculate the standard deviation in two passes) =

1 def sd_slow (im):
"Return_the_standard_deviation_of_an_image_(two-pass)"
ny, nx, nc = im.shape

4 for y in range (0, ny):

for x in range (0, nx):
6 for ¢ in range (0, nc):
7 total += im[y,x,c]
8 n =ny % nx * nc
9 mean = total / n

11 total = 0.0

12 for y in range (0, ny):

13 for x in range (0, nx):

14 for c in range (0, nc):
15 v = im[y,x,c] - mean
16 total += v x v

17 v = total / n

18 return math.sqrt (v)

However, a little algebra helps here. Expanding the square gives

2 L 2 2
= UN 2 (P(x,y)?—2(P)P(x,y) + (P)?) (3.4)
_ 1 2 2(P) 2
" MN X’yp(x’Y) MN ;P(x,y) +(P) (3.5)
2
_ 1 2 1
- — XZJ:P(x,y) i (XZJ:P(x,y)) (3.6)

which might look messier but can be calculated in a single pass through

the image as it involves just the sum of the pixels and the pixels’ squares.

We end up with the following routine.
(Calculate the standard deviation) =

1 def sd (im):
"Return_the_standard_deviation_of_an_image"
3 ny, nx, nc = im.shape
4 total = total2 = 0.0

for y in range (0, ny):
6 for x in range (0, nx):

image mean s.d.

well-exposed 105.6 56.5
under-exposed 30.2 264
over-exposed 217.8 60.4

Table 3.1: Means and standard deviations
of the images of different exposures in
Figure 3.6

7 for c in range (0, nc):
8 v = im[y,x,c]

9 total += v

10 total2 += v * v

11 n

ny * nx * nc
(total2 - totalxx2/n) / n
13 return math.sqrt (v)

12 v

This conversion of the straightforward way of calculating the standard
deviation into a seemingly more complicated but computationally more
efficient algorithm is an approach that crops up fairly often in computer
vision. We shall see some examples later where algorithms that initially
look to be complicated can be made significantly simpler with a little
careful thought.

With the standard deviation under our belt, we can turn our attention
to measuring the similarity of a pair of images (or, more generally, sets of
data). Of course, statisticians have had to do this for many years, and they
have come up with a statistic to do it known as the sample cross-correlation
coefficient, conventionally written as r. We can use this directly on the
pixels of our images, P and Q, and r is given by:

r= —<PQ> 3.7)

v (P2)(Q?)

where (---) denotes averaging over the N pixels of the image. Now (P2)
is essentially the square of the standard deviation of P (and likewise for
Q); and (PQ) is called their covariance; we shall see this again when we
explore face recognition.

If we expand the (- --) notation and simplify, we can actually calculate
r from sums accumulated in a single pass through the pixels of an image
in much the same way as for the standard deviation itself:

V(-5 (ze- 52

where each of the sums is performed over the N pixels of the image. Note
that >} P2 # (3. P)? for precisely the same reason that the s.d. is not the
same as the mean. Translating this into code, we end up with the following.

(Calculate the correlation coefficient) =

def correlation_coefficient (iml, im2):

2 "Calculate_the_correlation_coefficient_between_two_images"
ny, nx, nc = iml.shape

4 Sumx = sumy = Sumxx = sumyy = sumxy = 0.0
for y in range (0, ny):

6 for x in range (0, nx):

7 for ¢ in range (0, nc):

8 vl = iml.im[y,x,c]

9 v2 = im2.im[y,x,c]

10 sumx += vl

1 sumy += v2

12 sumxx += vl * vl

13 sumxy += vl *x v2

VISION SOFTWARE 43

44 COMPUTER VISION

14 sumyy += v2 x v2

15 n =ny *x nx * ncC

16 vl = sumxy - sumx * sumy / n

v2 = math.sqrt((sumxx-sumxxsumx/n) * (sumyy-sumyxsumy/n))
18 return vl / v2

r has some interesting properties. It lies in the range —1 to +1. The
value 41 occurs when P and Q vary identically. That is not to say that the
images are identical: they may differ in scale and offset but their variations
have to be ‘in step,’ as in, for example, an image and a contrast-stretched
version of it. The opposite extreme, r = —1, occurs when one image is
like a photographic negative of the other — where one image increases
from pixel to pixel, the other decreases — and again scale and offset have
no effect. Finally r ~ 0 means that the two images are, on average, not at
all like each other.

It has taken us some time to get there, but we have ended up with two
different ways of assessing the similarity of histograms, sum squared dif-
ference and correlation. Armed with these, we can measure the similarity
of histograms and hence try to do some content-based image retrieval.

Let us now consider a program, colrecl, that implements this idea.
colrecl is invoked with a number of image files on the command line.
The first of these is the probe image, the one for which matches are to
be found, while the others are the test set of images in which a match is
sought.

(colrecl.py) =

#!/usr/bin/env python3
> "Demonstrate_content-based_image_retrieval_using_histograms"
import sys, math, cv2

6 <<Calculate the correlation coefficient>>
7 <<Calculate the histogram>>

w0 # Say hello and initialize things.

> 1if len(sys.argv) < 3:

13 print ("Usage:", sys.argv[0], "<probe>_<test-images>", file=sys.stderr)
14 sys.exit (1)

15 probe_file = sys.argv[1]

16 V_best =0

17 f_best = "?"

19 # Read in the probe image and find its histogram.

>1im = cv2.imread (probe_file)
22 a, probe = histogram (im, limits=[0,255])

24 # We now enter the main loop. The basic idea is to load an image,
»s # find its histogram, then compare that with the histogram of the
6 # probe image. We are careful to skip the case when the test

07 # image is the same as the probe.

2 for file in sys.argv[2:]:

VISION SOFTWARE 45

30 if file != probe_file:

31 print ("Processing", file)

32 im = cv2.imread (file)

33 a, h = hist (im, limits=[0,255])

34 v = correlation_coefficient (probe, h)
if v > v_best:

36 v_best = v

37 f_best = file

5o # We've finished our work so say which of the test set best matches the
w0 # probe and exit.
41 print ("Best_match_is", f_best, "with_correlation", v_best)

where histogram is the routine presented above. You might like to reflect
on why line 30 of this code is present.

As it stands, this program calculates a single histogram that spans all
the colour channels of an image — so an image having many pixels of blue
sky could be mistaken with one containing many pixels of green grass.
Hence, we should not expect it be very effective. A better approach would
be to calculate a separate histogram for each channel and then combine
them in some way, perhaps by calculating a separate correlation coefficient
for each channel and then combining them.

4
Convolution

Convolution is arguably the most important way of processing an image, pro-
cessing the region around each pixel in turn. We look at how it is performed,
the effects of different masks and ways of combining values. We conclude the
chapter with considerations of mathematical morphology and matched filtering,
designing masks to bring out particular image features.

4.1 Introduction

Now that we have some idea of how an image is represented and ma-
nipulated within a computer, we can start thinking more seriously about
processing images. The techniques we looked at in Chapter 3 all processed
each pixel independently of all others. However when we look at an image,
we do not look at each pixel in isolation; instead, we tend to focus on
the parts of the image where things change — edges, corners and so on.
This will be clear from Figure 4.1, in which the edges (obtained using
the Canny edge detector of Chapter 7) alone give a good impression of
the scene. Our first step away from considering each pixel in isolation is
therefore to consider small regions of images.

(a) The Essex campus (b) Edges obtained using Canny’s detector

4.2 Enhancing isolated points using convolution

Let us start by trying to identify pixels that differ widely from their sur-
roundings. These tend to be due to defects in the sensor but also help us
understand what is happening. Fairly obviously, the only way to determine

Figure 4.1: A photograph of the Essex
campus and its edges

whether a pixel is lighter or darker than its surroundings is to examine
the values around it; and we want to perform exactly the same series of
operations to each pixel of the image in turn, scanning over the lines and
pixels within each line in the way we saw in Chapter 3. Hence, given a
pixel at location (x, y) in the image P, we need to examine it and its eight
nearest neighbours:

I x—1 | x | x+1 |
y—=1| P(x—1,y—1) | P(x,y—1) | P(x+1,y—1)
y|| Plx—1,y) P(x,y) P(x+1,y)

y+1|P(x—1,y+1)|P(x,y+1) | P(x+1,y+1)

If P(x, y) is light, we want its value to become much larger (and hence
even lighter) than the other pixels shown above, and the easiest way to
do that is to multiply it by a large number. But that is not enough; for
if (say) P(x—1,y) were also quite large, it would also be large after
multiplication by the same number. So we need to multiply P(x,y) by
a large number and simultaneously suppress the values of those pixels
around it by multiplying them by smaller numbers. We can do this by
placing a 3 x 3 ‘mask’ of coefficients on the region of the image:

myp | Myp | My3

Myy | Mpy | My3
mgy | M3y | M33

and multiply each pixel by the corresponding coefficient in this mask.
Writing this out explicitly, we calculate

v = P(x—1,y—1)my; + P(x,y—1)myy, + P(x+1,y—1)m;

+ P(x—1,y)my + P(x,y)ma + P(x+1,y)mys

+ P(x—1,y4+1)my; + P(x,y+1)mgy + P(x+1,y+1)mgs

and use v to replace P(x,y). The overall process is summarized in Fig-
ure 4.2.

Center element of the kemnel is placed over the
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

Convolution kernel
(emboss)

New pixel value (destination pixel)

CONVOLUTION 47

Figure 4.2: Illustration of the con-
volution process (image from
https://developer.apple.com/
library/content/documentation/
Performance/Conceptual/
vImage/ConvolutionOperations/
ConvolutionOperations.html)

https://developer.apple.com/library/content/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
https://developer.apple.com/library/content/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
https://developer.apple.com/library/content/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
https://developer.apple.com/library/content/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
https://developer.apple.com/library/content/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html

48 COMPUTER VISION

We must be careful about the way we store results when performing a
convolution. In particular, we cannot perform store them ‘in place,” writing
the results into the image we’re reading values from as we would end
up using modified values for P(x —1,y —1), P(x,y —1), P(x + 1,y —1)
and P(x —1,y) in calculating the result for P(x, y) — this is known as
“recursive filtering” for obvious reasons. Hence, convolution is normally
done from one image structure into another.

We have now decided what we are going to do but it remains to choose
a set of values for the mask coefficients. Let us choose

—1(-1]-1
-1| 8 |-1
-1({-1]|-1

which is known as the Laplacian (after the French mathematician Laplace).
This mask fulfils our necessary criteria: the pixel in the centre of the mask
is multiplied by a large number, while those around are multiplied by
small ones. But why those particular values? The reason is that processing
homogeneous region of the image (i.e., one whose pixels all have identical
values) will produce a response of zero. A few minutes’ consideration
should then tell you what processing with this mask will do to an isolated
dark pixel: it will result in a large negative value.

4.3 Blurring

If the Laplacian enhances isolated pixels, we might ask ourselves what
effects other choices of coefficients have. The obvious other extreme is to
use

1111
1
1

When we convolve this with an image, we are summing up the pixels in
3 x 3 regions around each pixel, effectively averaging them. (In practice,
we would probably use % instead of unity in each of the 9 positions in
the mask, thereby calculating a true mean.) On a homogeneous region,
this would have no effect: the average of 9 identical values is the same as
each of them. But if one pixel was widely different from its neighbours,
convolution with this mask would tend to reduce its effect; in other words,
this can be used to perform noise reduction — though there are better ways,
as we shall see shortly. On the other hand, a sharp boundary between
uniformly light and dark regions would be smeared out by the region-
averaging process — in other words, the image would be blurred in much
the same way as focusing a camera poorly. Indeed, the above mask is
usually called ‘a 3 x 3 blur’

On images captured by a modern digital camera, a 3 x 3 blur has a
small but noticeable effect; the amount of blurring can be increased by
using 5 x 5, 7 x 7 etc. masks, or by applying a 3 x 3 on several times. Mask
sizes are almost always odd so that the region considered is symmetrical
around the pixel to be replaced.

People who have used Photoshop or similar tools may well have come
across blurring and convolution. One popular technique they employ for
enhancing images is unsharp masking. What this effectively does is subtract
the blurred image from the original one, enhancing the edges, and add
the result to the image.

4.4 Using the median

Our consideration of blurring masks tells us that we are effectively calculat-
ing the arithmetic mean of the 9,25,49... values for 3x3,5x5,7x7...
masks. But the mean is only one measure of the behaviour of random vari-
ables; others are the median and the mode. (For a symmetric distribution
with a single peak, all three coincide; but this is never achieved on real
data — and, as has been said before, computer vision is an experimental
discipline.)

The mode is the most commonly-occurring value, i.e. the peak of the
histogram. Modal filtering has never become popular in image processing,
perhaps because the numbers of values involved are so small, though
extensive work has been done on it [Davies, 2017]. On the other hand, the
median, the value in the middle position when all values are sorted into
order, has proved popular. The main reason for this is what happens in the
vicinity of a pixel whose value is widely different from those surrounding
it — just the kind of image feature the Laplacian finds. Although such
features can arise naturally in images, they tend to arise more commonly
from timing problems in image or video capture circuitry — so-called “salt
and pepper” noise — and we normally want to remove them. Convolving
using the mean will smear out the effect of a single light or dark pixel over
a region of the size of the mask; on the other hand, when the median is
used, the value sorts to one extreme of the pixel values and hence has a
much smaller effect on the median. So median filtering tends to be better
at noise removal, one of the main reasons for contemplating averaging
over a region, and introduces less blur too.

In terms of computation, the median takes more effort to calculate
than the mean as it involves sorting numbers into order. As people who
have studied algorithmics will know, there are many sort algorithms out
there. The easiest to code is the ‘bubble’ sort but it is pretty inefficient.
The algorithm with the best theoretical performance is the ‘quicksort’ and
is often taught in courses on algorithmics, though more because it is a
way of teaching recursion in programming. The fact is that quicksort also
can be a very poor sorting algorithm if the data happen to be ordered
unfortunately. A better choice for this kind of task is Shell’s sort, which
is almost as good as the quicksort in the best case and a lot better in the
worst case.

These mask-based operators are absolutely central to image processing.
In later chapters, we shall look at how they are used in feature detection,
with emphasis on finding first lines and then corners in images.

CONVOLUTION 49

50 COMPUTER VISION

4.5 Other types of masks

Having considered masks that enhance isolated spots or blur images, it is
useful to look at a couple more masks to motivate the discussion in later
chapters.

Consider what effect on an image the mask

1 1 1
0 0 0
-1(-1]-1

will have. This takes the pixels in a line of the image and subtracts off
it the pixels two lines below that. As usual, there is a zero response in
uniform regions, where all the pixels have the same value. Now consider
a vertical edge in the image directly below the centre of the mask: again,
the response will be zero. But what if the edge is horizontal? If the image
contains a lighter region (i.e., with higher-valued pixels) above a darker
one, this mask will produce a large positive response when it spans the
edge. Conversely, if the upper region is darker than the lower one, the
mask produces a large negative response. So this mask tends to detect
horizontal edges. By analogy, it is fairly easy to design a mask to detect
vertical edges:

-1]0
—-11(0
-1(0]|1

What happens if we wish to detect edges that are neither vertical nor
horizontal? We could design masks for the 45° angles. However, an edge
running diagonally across the image will produce a response from both
these masks, though less in both cases than would be obtained from its
optimally-oriented edge — so a way ahead is to combine the responses
from these two masks.

This approach is what is used in Sobel’s edge detector. It uses two masks
which differ only a little from those above:

-1 -2 -1 -1 0 1
H=10 0 O V=|-2 0 2
1 2 1 -1 0 1

and combines their responses in quadrature:
VH2+V2 4.1

to calculate the overall response at a pixel. The Sobel detector is able to
run at video rate on quite modest hardware so is widely used in practice for
edge detection. The edge detector due to Canny, presented in Chapter 7,
is a little better than Sobel’s though somewhat more complicated. It is
able to run at video rate on modern PC-class hardware too.

4.6 Implementing convolution

It is not tricky to code up a routine that implements straightforward con-
volution: it is only a matter of multiplying pixels by their coefficients and

adding up the result. The biggest problem is around the edges of the
image, for it is not clear what should be done. There are several possible

approaches, ranging from padding out the edges of the image with zero
values (or, equivalently, ignoring mask pixels that ‘fall off’ the image),
mirroring the image, and so on.

However, only one way of handling the edges agrees with the underlying
Fourier theory (which takes too long to go into in this lecture course) and
that is to wrap those mask coefficients that ‘fall off’ one edge of the image
around to the other edge. Fortunately, all programming languages have a
way of calculating the remainder when one number is divided by another
and we can use this to work out subscripts; in C and Python, this is the
‘s’ operator. With this, the routine that implements convolution in EVE is
shown below. You could use it on images read in Using OpenCV but it runs
pretty slowly because all the loops are coded in Python — OpenCV routines
are much faster because their loops are written in C++ and compiled down
to machine instructions. You will see that this supports different types of
convolution (mean, median etc.) and the similar morphological operators

(see the next section) via minimum and maximum.

(Convolve an image with a mask) =

1

)

def convolve (im, mask, statistic='sum'):

Perform a convolution of im with mask, returning the result.

Arguments:
im the image to be convolved with mask (modified)
mask the convolution mask to be used
statistic one of:
sum conventional convolution
mean conventional convolution
median median filtering
min grey-scale shrink (reduces light areas)
max grey-scale expand (enlarges light areas)
im = reshape3 (im)
ny, nx, nc = sizes (im)
mask = reshape3 (mask)
my, mx, mc = sizes (mask)
yo =my // 2
X0 = mx // 2

Create an output image of the same size as the input.
result = image (im)

We need a special case for 'min' statistic to erase the mask elements
that are zero.
nzeros = len ([x for x in mask.ravel() if x == 0])

Loop over the pixels in the image. For each pixel position, multiply
the region around it with the mask, summing the elements and storing
that in the equivalent pixel of the output image.

vV = numpy.zeros ((myxmx*mc))

vi =0

CONVOLUTION 51

http://vase.essex.ac.uk/software/eve.html

52 COMPUTER VISION

34 for yi in range (0, ny):
for xi in range (0, nx):

36 for ym in range (0, my):

yy = (ym + yi - yo) % ny
38 for xm in range (0, mx):
39 XX = (xm + Xi - x0) % nx
40 v[vi] = im[yy,xx,0] * mask[ym,xm,0]
4 vi += 1

42 if statistic == 'sum':

ave = numpy.sum (V)

44 elif statistic == 'mean':
45 ave = numpy.mean (v)
46 elif statistic == 'max':
ave = numpy.max (v)
48 elif statistic == 'min':

49 v = sorted (v)
50 ave = numpy.min (v[nzeros:])
51 elif statistic == 'median':
52 ave = numpy.median (v)
result[yi,xi,0] = ave
54 vi =0
return result

4.7 Mathematical morphology

You might be asking yourself at this point whether there is anything else
that can be used in convolution as well as the mean, mode and median. Two
other interesting possibilities are the minimum and maximum values, and
these give rise to grey-scale versions of what are known as morphological
operators. Taking the minimum of a region will naturally tend to make
light regions smaller; a 3 x 3 minimum will usually remove the outermost
light pixels from around a region, so this operation is called an erode or
shrink. Conversely, taking the maximum will tend to grow light regions,
by one pixel for a 3 x 3 region, two for a 5 x 5 region, and so on; this is
known as a dilate or expand.'

If we perform an erode followed by a dilate, a few moments’ thought
should tell you that we will delete any isolated light pixels inside dark
regions; this is known as an opening. The converse, dilate followed by
erode, is a closing. Some of these operations are illustrated in Figure 4.3.
It is clear that the specular reflections in Figure 4.3(b) are much more
apparent than those in Figure 4.3(a), the original image, due to the expan-
sion of light-coloured regions. Similarly, the reflections in Figure 4.3(c)
are much less apparent than the original image. Finally, the result of the
opening in Figure 4.3(d) essentially finds the outlines of bright regions.
These morphological versions of convolution are especially useful when
one has identified regions of images that correspond to objects of interest,
and those regions need to be ‘tidied up.’

If a morphological shrink reduces the size of light feature on a dark
background by one pixel around its boundary, then subtracting the result
of the shrink from the original image will leave only its boundary — see
Figure 4.4.

Let us consider one final morphological algorithm, one that finds the

! A little care is necessary here as some
texts consider the shrinking and ex-
panding of a dark region on a white
background, so you may encounter the
opposite terminology to what I've used.

CONVOLUTION 53

(a) Original image (b) Expand

(¢) Shrink (d) Opening
Figure 4.3: Morphological expand, shrink
and opening

(a) Original image (b) Difference between original and result (c) Morphological skeleton
of shrink

Figure 4.4: Finding an object’s boundary
and skeleton

54 COMPUTER VISION

‘skeleton’ of a region — by which we mean something that retains its
connectivity but discards most of the pixels. Starting with the original
image, each iteration of the loop shown below makes skel into a version
of itself with small regions removed or the image after a shrink — so it
contracts the shape of white features until just before all white pixels are
removed.

(Skeletonize a binary image) =

1 skel = im
> while True:
3 eroded = shrink (im, mask)

4 opened = expand (eroded, mask)
5 temp = im - opened

6 skel = bitwise or (skel, temp)
7 if eroded.sum () ==

8 break

9 im = copy (eroded)

For the horse image of Figure 4.4(a), some 55 iterations of this loop yield
the skeleton of Figure 4.4(c).

4.8 Finding known patterns in images

Matched filtering. There are many cases where we might wish to find or
emphasize arbitrary-shaped regions within an image. To give a concrete
example of this, Figure 4.5 shows a micrograph of a cell where proteins on
the cell membrane (outer surface) give it a characteristic ‘lumpy’ appear-
ance. In modelling the biological processes of cells, one needs to know
how much the proteins clump together into regions; and to do that, one
needs to determine where each protein lies in the image.

(a) Cell membrane image showing lumps (b) Protein locations found by matched
of proteins filtering

If, as in this case, we are able to identify the general appearance of the
feature that we are looking for in the image, we can design a so-called
matched filter which will produce a large response when that feature is
encountered. In this case, we observe that the proteins appear to be
illuminated from the upper left corner of the image, so a mask that has

Figure 4.5: Locating proteins on cells
using matched filtering

a positive response to its upper left and a negative response in its lower
right will tend to enhance these features. Hence, a suitable convolution
mask will be something like:

21110
110 |—1 4.2)
0|—-11|-2

As usual, the coefficients in the mask sum to zero so that it will produce a
response of zero for a uniform region of the input image. Figure 4.5(b)
shows all the significant peaks found with this matched filter. There are
some false positives which can be removed by tuning the size of the peak
responses that we accept; but for literally five minutes’ work, this is pretty
good.

Template matching. When a suitable matched filter is not obvious or the
processing needs to be made automatic, we need an alternative strategy.
One suitable technique is to identify and extract from the image a typical
feature. This extracted region forms a template that we want to look for in
the image. We can then centre the template over each pixel in the image in
turn and work out the similarity between the template and image region —
and in Chapter 3 we considered two ways of determining similarity when
we looked at content-based image retrieval, namely simple differencing
and correlation.

The great tragedy of The grest tregedy of

science: the slaying of science: the slsving of

a beautiful hypothesis £ begutiful hypothesis
by an ugly fact by len ugly fect

== Huxley == Huxley

(a) Original image (b) Best matches with the letter ‘@’

To illustrate this process, Figure 4.6(a) contains the author’s favourite
quotation. This was correlated with the letter ‘@’ at every position in the
image and the best matches are marked in Figure 4.6(b). Incidentally,
readers who have a knowledge of video coding will recognize that template
matching forms part of the motion estimation techniques of the H.261 and
MPEG standards.

CONVOLUTION 55

Figure 4.6: Template matching used to
locate occurrences of ‘@’ in text

5

Low-Level Vision

We consider principled ways of determining how to threshold imagery into
foreground and background, then ways of segmenting isolated objects from
the background and allocating them unique labels. We then look at how these
labelled regions can be described and hence how one can build working vision
systems based around the shapes of features.

5.1 Introduction

The techniques we have explored to date are useful for looking at and
manipulating the content of images but none of them do particularly useful
things to them in terms of analysis. In this chapter, we consider how low-
level processing of image data is able to extract useful features, and how
those features can be used to build complete, working vision systems. This
is illustrated by an industrial inspection example.

Bearing in mind that we have discussed ways of emphasising particular
types of features, a natural first step is to consider the use of thresholding
to identify useful features; so that is where we shall start. This leads into
a consideration of how one would best set the threshold, and then what
one can do when one has managed to segment a feature successfully.

5.2 Isolating regions by thresholding

If we are lucky, our image processing gives a histogram that has two peaks,
one due to the background and the other to the objects of interest. Setting
a threshold that neatly divides objects from background is then fairly
straightforward, and a few minutes’ thought should tell you that the best
place for the threshold is between the two peaks. However, look at the
histogram in Figure 5.1: the best place to put the threshold is less obvious,
so it would be useful if there was a principled way of determining where
to put it.

Perhaps surprisingly, there is a way to do this. The first thing to realise
is that thresholding will be most effective if all the pixels in an object have
roughly the same value, and that is well-separated from the values of the
pixels in the background — that is essentially saying that we want two
well-separated peaks in the histogram. We know a way of measuring the
spread of data in a histogram: its standard deviation (or its square, the
variance). A peak formed from pixels having roughly the same value will

8

8

o0
50 o E) 100 150 20 20 B

Figure 5.1: Histogram of a typical
image. Where is the best place to set a
threshold?

have a small variance, so we want to choose a threshold that minimizes
the variances of the object and background regions — these are so-called
“within-class” variances.

Let us now consider this mathematically. We want to minimize the
within-class variance

2

awithin:a)B(t)Uﬁ(t)+wF(t)o-1%(t) (5.1

where the weighting factor wg(t) is the probability of the background
and wp(t) that of the foreground, and o2 (t) and o%(t) the background
and foreground variances respectively. All of these are functions of the
threshold t. Nobuyuki Otsu was the first to show that (5.1) can be re-
written in terms of the between-class variance:

2 2 2
Opetween (t) = 0"~ O yithin (t)

= wp(up—u)? + wp(up —p)?® (where pu = wpy, + wpiy)
= wpwp (MB_.Uf)z (5.2)

where up and up are the background and foreground means respectively
[Otsu, 1979]. So minimising the within-class variance is the equivalent to
maximising the between-class variance, and the latter is much easier to do
than the former.

The class probabilities etc. can conveniently be calculated from the
histogram:

wp(t) =Y p(0) u () = D p(i)x(i)
i=0 i

= i=0
G G
wp(t)=), p(i) up(t) = > p(i)x(i)
S .

where G is the number of grey-level bins in the histogram, x(i) is the
middle of the i histogram bin and p(i) the corresponding probability.
This leads to a fairly straightforward algorithm

(Otsu’s method for choosing a threshold) =

1 def otsu (im):
2 "Determine_the_threshold_by_Otsu's_method."
Initialization.
4 nr, nc, nb = im.shape
npixels = nr * nc * nb
6 # Work out the histogram.
7 ngreys = int (im.max () + 1.5) # round the value
8 hist = numpy.zeros (ngreys)
9 for r in range (0, nr):
10 for ¢ in range (0, nc):
11 for b in range (0, nb):
12 v = int (im[r,c,b]l + 0.5) # round the value
13 hiSt[V] += 1

LOW-LEVEL VISION 57

15 # Step over all the possible thresholds, calculating the between-class

16 # variance at each step and working out its maxiImum as we go.

58 COMPUTER VISION

17 sum = eve.sum (im)

18 sumB = totB = threshold = max_var = 0
19 for t in range (0, ngreys):

20 sumB += hist[t]

21 if sumB == 0: continue

22 sumF = npixels - sumB

23 if sumF == 0: break

24 totB += t * hist[t]

25 mB = totB / sumB

26 mF = (sum - sumB) / sumF

27 var = (sumB / sum) * (sumF / sum) * (mB - mF)x*x2
28 if var > max_var:

29 max_var = var

30 threshold = t

31 return threshold

Note that this code yields the threshold correctly only if there is a single

2
Ubetween

global threshold is enough to separate foreground from background, and

that is maximum. Moreover, an implicit assumption is that a single,

the real world is not always that simple. On a positive note however, the
approach can be extended to cope with multiple thresholds.

In practice, Otsu’s method is found to work well when the foreground
and background have roughly similar numbers of pixels; it is less effective
when, for example, there are a few foreground pixels superimposed on a
large background.

To illustrate Otsu’s method, consider the 10 x 10 image shown in Fig-
ure 5.2(a). The histogram of this image is plotted in Figure 5.2(b) and
the threshold determined by the otsu routine above is shown with a ver-
tical line at the value 4 — pixel values below this threshold represent
background and those above foreground.

5.3 Region labelling

Otsu’s method is able to help us partition or segment objects of interest
from their surrounding background. The next step is typically to identify
which pixels belong to which object — in other words, we want to assign a
number to each region of the image shown in Figure 5.3(a). With regions
numbered as in Figure 5.3(b), all pixels that have the value (say) 3 belong
to the same object, and that is a different object to pixels whose value
is (say) 4. So how do we move from an image in which all regions have
been segmented from the background to one in which the regions are
numbered? This task is known as region labelling, connected-component
labelling or blob labelling.

Studying Figure 5.3 for a little while should give you an idea of an
algorithm: each pixel in a numbered region has a neighbouring pixel in
the same region above, below or to the left or right of it, or the neighbouring
pixel is background. Hence, we can scan across the image in the usual way,
top to bottom and left to right, and at each pixel look at the neighbours
immediately above it and immediately to its left; if either of these pixels is
set, the centre pixel is also part of the same region.

This approach works well until a shape like region 5 in Figure 5.3(b)
is encountered. The first pixel encountered is the top-left one and it will

0 3 4 2 1 7 7 8 8 8
1125|4377 19]9]S8
0 1 4 5 4 18 9 9 8 8
oO(0 |3 |44 7|7]9]|8]|7
0 1 2 4 5 6 6 7 715
1 1 2 5 5 5 5 6 71 4
1 2 3 4[4 1]6 7 8 8 7
2 (3141458 ([8]9([9]9
of1]12]4|4]|6|7]|8[9]38
ofo| 11|57 7]9[9]F¢6
(a) 10x10-pixel image
|
15 —
S 101 — H
c
[}
=}
o
L
Y —
5 ||
0 T
0 5
grey level

(b) Corresponding histogram

Figure 5.2: Example 10-level image and
its histogram, with the Otsu threshold
marked

LOW-LEVEL VISION 59

ojojojojofo0jojojofo ofojojojofojojo0j0yo0
of1{1(f0f1|j1)J0j0]1{1 o|1({1(0(2|2]|0|0]|3]3
1(1{1]J]0(0|1]0|0]1]1 1117170 (0(2|0|0]|3]|3
ojofofojOo|l1|(1]0]|0]|O 0(f0]j]0]0]|0[2]2]0]07]0
11]1j]0j0]0fOf1|1|0]O 414(0({0|0|0]|2]|2]0]0O0
ofofojfo|jojojojojof|o oj|o0fO0O(O0O|O|O]|JO]|JO]O]O
o|j1(0f1]j]0|]1|0]O0O]|0O]|O o|5(/0|5]|]0|6[0]|]0|0]O0
oj1j1rj1jofof1|]1|1{1 O|S5|5|5|10|0|7 |7 |77
ofofojfo|jojojo|1|1(o0 0|{0(O0O[O0O|O|O0O|0O|71]7160
ofofojfo|jojojojojof|o ojofofo|jo|jo0ojojojoj|o
(a) Thresholded image (b) Corresponding labelled regions

be correctly numbered as “5” but the next pixel of the object on the same
line is not adjacent to it and would then be considered as part of a new
region and numbered “6.” It is not until the following line of the image is
processed that these two pixels are known to be connected.

When situations such as these are encountered, the solution is to put an
entry into an “equivalence table,” recording that labels 5 and 6 are actually
the same region. Then, when the entire image has been labelled, a second
pass is made through it changing all pixels labelled with a 6 to a 5. (A
little refinement of this approach is also normally made, renumbering the
regions so there are no ‘missing’ numbers.)

It is worth noting that the need for the label equivalence table can
be dispensed with if one programs the algorithm recursively. While this
works on small images, as soon as one starts to label images taken from a
video camera, the program’s stack (which is normally limited in size, to
catch errant recursive programs) tends to overflow, leading to a run-time
error even on a computer with a vast amount of memory. The recursive
approach is also normally much slower than the equivalence table one.

The observant reader will be wondering, as the algorithm considers
pixels to above and to the left, what happens to the first line and column
of the image. The answer is that they are treated specially: the first
pixel of the first line is set to zero, then the remainder of the first line
is processed by considering only the neighbour to the left. When that
line has been processed, the first column is processed by considering
only the neighbour above. These special cases and the equivalence table
processing together make the code to implement region labelling rather
long — and the algorithm is inherently sequential. EVE provides two
implementations of this algorithm: eve.label_regions uses an imple-
mentation in a compiled language that forms part of the scipy package,
while eve.label_regions_slow is a pure Python alternative. The latter
is vastly slower to execute than the former. A complete program that
performs thresholding and region labelling using EVE looks like:

(Threshold and label images) =

import sys, eve

Figure 5.3: Distinct regions of an im-
age and the result of region labelling.
Regions 6 and 7 with four-connected
processing will all be in region 6 if
eight-connected processing is used.

http://vase.essex.ac.uk/software/eve.html

60 COMPUTER VISION

s # The first argument should be the threshold, and all others filenames.

4+ 1if len (sys.argv) < 3:

print >>sys.stderr, "Usage:", sys.argv[0], "<threshold>_<file>..."

6 sys.exit (1)
7 threshold = float (sys.argv[l])

o # Loop over the images, processing each in turn.
10 for fn in sys.argv[2:]:
11 im = eve.image (fn)

12 mim = eve.mono (im)

13 mask = eve.binarize (mim, threshold)
14 mask, nregs = eve.label _regions (mask)
15 print nregs, "regions_found."

1 eve.display (mask, stretch=True)

There is a roughly one-to-one mapping from EVE calls to OpenCV ones,
though the latter are more tricky to invoke. The associated laboratory
sessions will see you build OpenCV-compatible routines that do similar
tasks to these EVE ones.

Careful examination of Figure 5.3 will show that there is a single pixel
labelled “6” and that it is diagonally-connected to region 7. Some im-
plementations of region labelling will look at the neighbours above, left
and above-left of the pixel under consideration to find other pixels in the
same region; this is known as 8-connected region labelling whereas the
approach described above is 4-connected. If the image of Figure 5.3 was
processed with an 8-connected algorithms, all those pixels labelled “7” in
the figure would instead be labelled “6.”

Although not advertised as being region labelling, OpenCV does provide
this functionality: regions are what are returned by its findRegions
routine. In that case, subsequent OpenCV calls on individual regions are
able to provide a further information; let us look at the kind of information
that can be returned and how it can be used.

5.4 Describing regions

Having isolated regions of interest and labelled them, we need to think
about what to do with them. For many vision problems, the underlying
method is to identify these regions and classify them — to identify, say,
whether a lesion on a person’s skin is a mole or a melanoma, a dangerous
form of skin cancer. When this is the case, the normal approach is to make
a set of ‘measurements’ of each region and use that as the basis of distin-
guishing the different classes. It is rare that a single such measurement
will discriminate the different classes, so the normal approach is to make
a number of measurements which are concatenated into a feature vector
and use that to distinguish classes.

Many people find the idea of feature vectors difficult to grasp so let
us step away from computer vision for a moment to consider a classic
piece of work that involves a feature vector. As long ago as 1936, biologist
Ronald Fisher tried to distinguish three species of iris (Figure 5.4) from
four measurements of them: sepal length, sepal width, petal length, petal
width [Fisher, 1936]. He measured 150 individual flowers and the first

(c) Iris virginica
Figure 5.4: Iris species used by Fisher
(images from the Wikipedia)

https://en.wikipedia.org/wiki/Iris_flower_data_set

few lines of the dataset are:

#SL SW PL PW CLASS

5.1 3.5 1.4 0.2 Iris-setosa
4.9 3.0 1.4 0.2 Iris-setosa
4.7 3.2 1.3 0.2 Iris-setosa

I have software for visualizing datasets such as these in my research lab on
a full-wall stereoscopic display, meaning that you gain a good impression
of depth. Figure 5.5 plots three of the four features along the axes, with
the species being shown by colour. An interactive demonstration of this
allows the user to spin around the axes! but from the image, you should
be able to see that one species, coloured red, has all its points well away
from the others. You should be able to imagine a plane in the 3D space
which separates the cloud of red points from the others. However, that
is not the case for the other two sets of points, which are inter-mixed or
confused: they cannot be separated by a plane no matter which way it is

oriented.

This iris example is a very useful one because it shows how a feature
vector can make it fairly easy to distinguish classes: the technique known as
a support vector machine introduced in Chapter 10 computes the separating
plane described in the previous paragraph. In fact, the most effective
current way of identifying classes from feature vectors is to use machine
learning — algorithms that mimic a person’s ability to learn. There are
many machine learning algorithms (you will almost certainly have heard
of neural networks) and we shall look at some of them in Chapter 10
and 11. You should also note that it is sometimes impossible to distinguish
confused classes.

LOW-LEVEL VISION 61

! In my lab, you can do this using
gestures.

Figure 5.5: Visualization of Fisher’s iris
data showing how one species (in red) is
easily distinguished but the other two are
confused

62 COMPUTER VISION

Returning to the vision domain, what sort of measurements of a region
can go into a feature vector? The most obvious is the number of pixels
in the region — in other words, its area. Closely related to that is the
region’s perimeter, the number of pixels in its boundary; you will recall
from Chapter 4 how it can be found. From those, we can obtain further
a useful quantity, the circularity: how close the shape of the region is to
a circle. For a circle of radius r, its area is A = nr? and the perimeter
C = 27tr. Hence, if we calculate

C? 4n?r?
A mr2

to make it independent of the radius, then the closer the ratio of C 2/A

=4n

is to 4m the closer the shape is to being circular. The circle is the most
compact 2D shape, so all other shapes will have a value larger than 4.

In a similar vein, if one determines the lowest and highest x and y
positions of pixels in the object, then one can determine its bounding box,
the smallest rectange that encloses it. It is then easy to calculate the area
of the bounding box; and if we divide that by the number of pixels in the
object, we end up with the rectangularity, how similar the shape is to a
rectangle. The closer this is to unity, the more rectangular is the shape.

Extending the idea of the bounding box, we can determine not only the
limits of the object above, below and to the left and right, but also in the
diagonal directions (Figure 5.6). By connecting opposing pairs of these
extremal points (top left to bottom right, etc.), we create four axes that
describe the shape. These can be used directly in the feature vector or
in combination, e.g. the ratio of the longest to the shortest can be used
to define an aspect ratio or eccentricity of the shape. The direction of the
longest axis can also be used as a direction of the shape.

An object which contains within it other labelled regions can be thought
of as having holes, and the number of these can be helpful in describing
shape — think of distinguishing a D-shaped region from a B-shaped one:
the D has one hole but the B two.

A somewhat different approach is to count the number of pixels lying
in each column of a shape, to give a vertical profile; and similarly for a
horizontal profile — even a diagonal profile. These can be thought of as
‘shape signatures’ and used for matching similar shapes on their own, or
added to a feature vector.

The descriptors described above only touch on the ways in which shape
can be described. In some of the author’s research described in Chapter 10,
there are > 120 shape and texture descriptors; a machine learning system
identifies which of them are the most effective for a particular problem by
trying them out on segmented shapes and then goes on to learn how best
to identify the classes of object correctly. We were able to use that to make
a vision system learn how to read car number plates, the first purely-learnt
system to do so — see Chapter 10.

5.5 A practical shape-based vision system

The research community has been fixated on the use of high-level vision
for solving all types of vision problem for about a decade now. That’s

Figure 5.6: Extremal points can form a
shape descriptor

”

a pity because the old adage of “using a sledgehammer to crack a nut
applies: simpler systems using only the low-level techniques described in
this chapter are perfectly adequate — and run faster using less resource.
Let us explore such a system here.

Industry uses computer vision extensively. If you watch the BBC’s series
Inside the Factory, you’ll find that most of the huge factories visited have
vision-based quality assurance as an intrinsic part of their production
pipelines. Although the author doesn’t have a production line handyj it is
fairly easy to mimic the type of imagery they produce.

Imagine a biscuit factory. After the biscuits have been baked they are
loaded onto a conveyor belt, where they pass below a vision system en
route to where they are packaged. As vision engineers, our job is to build
a system that identifies misshapen or broken biscuits, or ones that have
been under- or over-cooked. Let us concentrate on the first problem here.

The first thing we need to do is consider the environment. Biscuits that
have a chocolate coating tend to be shiny so the first thing we need to
do is ensure that the lighting reduces or avoids specular reflections from
them. The easiest way to do that is to make the lighting diffuse. It will
also make our task much easier if the conveyor belt is a good contrast from
the biscuits. Typical images from the conveyor belt might look like those
in Figure 5.7.

Based on the pipeline we have examined above, a suitable series of
stages is:

. convert the image to monochrome
. threshold the image

. delete small regions and fill in gaps with morphologial processing

1
2
3
4. label the regions
5. compute descriptors for each region
6

. determine whether regions are circular, rectangular or reject

The result of this processing is shown in Figure 5.8. You will see that it has
done well for all the biscuits that contrast well with the background but not
for the chocolate ones, which tend to be darker. Two small regions have
been detected on one biscuit and two others have been missed completely!
However, lowering the threshold would cause the lighter region at the
right of the image to grow and so is probably not the best strategy. There
are adaptive thresholding schemes and one of those might work better, or
the system developer needs to improve the lighting.

What we have found here is not uncommon: something that looks
obvious to a human and has a seemingly well-designed series of steps
may not work in practice because some feature of the real world has been
overlooked.

A real production line would not carry many different types of biscuit at
the same time; a more common requirement is to distinguish well-formed
biscuits and reject those that are broken or badly formed. Despite the
difficulty with segmenting chocolate biscuits, the shape processing stage
works well, as Figure 5.9 shows.

There is one difficulty with rectangular biscuits that does not occur
with circular ones: if the sides of a biscuit are not aligned with the edges

LOW-LEVEL VISION 63

Figure 5.7: Biscuits on a virtual conveyor
belt

64 COMPUTER VISION

Figure 5.8: Identification of circular

and rectangular biscuits. Note that

there is a spurious region due to uneven

illumination and how difficult the brown
biscuits have been to distinguish from the
background

Figure 5.9: Broken and overlapping
biscuits are rejected

(a) Broken (b) Overlapping

of the image, they can be rejected even if undamaged; see Figure 5.10.
The solution here is to compute the oriented bounding box. This is done
using principal component analysis, a technique outlined in Chapter 8 and
illustrated in Figure 8.11 — but all you need know at the moment is that
it works, as Figure 5.10(c) demonstrates.

Figure 5.10: Rectangular biscuits at an
angle and their bounding boxes

(a) Biscuit aligned with axes (b) Axis-aligned bounding (c) The solution is to com-
box fails when the biscuitis pute an oriented bounding
oriented box

5.6 Measuring texture

We considered colour in Chapter 3 and have just looked at shape. Does the
human vision system have other capabilities which help recognize things?
The answer is clearly that it does, and perhaps the most important one
that we have not yet considered is texture.

Figure 5.11: Brickwork is a regular
texture

Clearly a brick wall (Figure 5.11) has a texture, one that is regular in
appearance. Identifying a regular texture such as this is not too difficult: if
we know the ‘unit cell’ from which the texture is built, we can use template
matching (Chapter 4) to identify where it appears. If we don’t know the
unit cell, we can use an approach called autocorrelation (which will be
familiar to readers whose background encompasses signal processing) to
establish it and where the repeats occur.

However, many textures do not have a regular pattern; Figure 5.12 is a
mosaic of several types. For these random textures, one can produce only
statistical descriptions of them. It is probably fair to say that identifying
textures such as these, and hence segmenting regions by the texture they
contain, in as effective a way as colour and shape is an unsolved problem
in computer vision.

We shall now examine two classic ways of describing random textures.
We shall return to the topic in our consideration of intermediate-level
vision in Chapter 7 and machine learning in Chapter 11 but the techniques
covered are not necessarily more useful than those we shall consider here,
which remain in widespread use several decades after they were devised.

Grey-level co-occurrence matrices Clearly, it is not possible to describe a
texture from the values of individual pixels taken in isolation. A natural
approach is to take pairs of pixels separated by a particular distance and
direction, determining how similar they are. Let’s think of looking a pair
of regions of an image separated by X and Y along the two directions.
Something like the mean square error or correlation won’t work well
because the relationship between the regions is only statistical, so there
won’t necessarily be a definite minimum or maximum. Instead we plot
a scattergram with the grey-level value of one region along one axis and
the grey-level value of the other region along the other axis — this is
known as a grey-level co-occurrence matrix or GLCM. The GLCM of the
brick texture of Figure 5.11 is shown in Figure 5.13. As you would expect,
(0,0) lies at the top-left corner of the image and (255, 255) at the bottom
right. Non-zero values lie mostly along the leading diagonal of the GLCM,
showing that — for the shift considered — most pixels are similar in grey
level to each other. Some other examples of textures from the Brodatz
texture dataset and their corresponding GLCMs are shown in Figure 5.14.
You might reasonably think that, for textures with a definite directionality,
the GLCMs would exhibit this too. Figure 5.15 shows different rotations
of a Brodatz texture with a definite directionality and the corresponding
GLCMs: there is little visible difference between GLCMs, though the two
differ in detail. You might also wonder what effect the shifts have on the
GLCM, so some examples are shown in Figure 5.16.

The GLCMs themselves only extract information that may be useful,
they do not actually describe textures. To do that, [Haralick et al., 1973]
devised 14 measures and used them successfully to describe textures such
as corn, grass, water and wood. However, [Connors and Harlow, 1980]
found that only five of them were really useful; if N (i, j) is the GLCM, the

LOW-LEVEL VISION 65

Figure 5.12: Mosaic of irregular textures
(from USC-SIPI’s Brodatz texture dataset)

Figure 5.13: Grey-level co-occurrence
matrix of the brickwork of Figure 5.11 for
shifts of X =5,Y =3

http://sipi.usc.edu/database/database.php?volume=textures&image=57
http://sipi.usc.edu/database/database.php?volume=textures&image=57
http://sipi.usc.edu/database/database.php?volume=textures&image=57

66 COMPUTER VISION

useful measures are:

energy = ZZNZ (i,7)

entropy = —ZZNd (i,7)logy Ny (i,)
contrast = ZZ (i—3j)*Ny(i,§)
Ny (i,
homogeneity = ZZ 1 _ﬁ T _J]|
. Z Z :ul J .U’])Nd(l J)
correlation =
O'iO'j

where u;, u; are the means and o, 0 the standard deviations of the row
and column sums Ny (i) and Ny (j) defined by

Ng(i) = D Ng(i.j)
j
2. Na(i.)

One problem with GLCMs is choosing the displacements d = d,, d,, along

the axes. A solution is to select the values that yield the most structure,

Ng(j)

which can be done by maximising
ng (i,J)
2 a\>
= — 1
i~ 22N,y

The result of this is a series of numbers that (hopefully) characterize a
texture uniquely — but you are still left with the problem of distinguishing
which range of numbers identifies which texture, arguably best done using
some kind of machine learning (Chapter 10). In fact, there has been a
recent trend towards computing all 14 texture measures and using them
to train a neural network to distinguish texture classes; while this often
works to some extent, you should always bear in mind the “first law of
machine learning”: garbage in, garbage out — in other words, you have to
train on data that stand a chance of distinguishing classes.

Laws’ masks Laws’ approach [Laws, 1979, 1980a,b] was somewhat dif-
ferent from that in GLCMs. He used a small number of convolution filters
to identify points of high “texture energy” in images and from them char-
acterized different textures. His masks are constructed from fairly simple

1-D ones; the set of five-element masks is
local average,Ls =[1 4 6 4 1]
edge detection,Es =[-1 —2 0 2 1]
spot detection,Ss =[—-1 0 2 0 —1]
ripple detection,Rs =[1 —4 6 —4 1]
-

wave detection, Ws =[-1 2 0 —2 1]

Note that the sum of elements of many, though not all, of these masks is
zero for the reason discussed in Chapter 4. They are sufficiently simple
that they can be used in real-time applications.

LOW-LEVEL VISION 67

Figure 5.14: Textures and corresponding

GLCMs for shifts of X

=7

Y

>

=10

(shown with a logarithmic scale of grey

levels to bring out detail)

(a) Bark

(b) Bubbles

IJ..

‘l IO
e ..3-.&-‘

4

UWUU- lfls-ll

.. fio b -

(c) Raffia

(d) Straw

68 COMPUTER VISION

o o
TR
Wl Tl

s
= .
Foi ¥

o ot
T T

Figure 5.15: Rotated textures and
corresponding GLCMs for shifts of

X =10,Y = 7 (shown with a logarithmic
scale of grey levels to bring out detail)

@X=1Y=0 b X=1Y=10

(©X=10,Y =0 (dX=20Y=0

Matrix multiplication of these 1-D masks yield the 5 x 5 ones that are
actually applied to images. For example

-1 0 2 0 -1
2 0 4 0 -2
EsSs=| 0 0 0 0 0
2 0 —4 0 2
1 0 —2 0 1

Masks obtained in this way are convolved with the original image to
produce output images which are passed through a second stage, a moving
window estimation of the energy within the images — hence the name
“texture energy” above. You end up with a series of energy values from the
various masks — but, just as with GLCMs, you still have to find a way of
determining which ranges of energy values correspond to which texture.

LOW-LEVEL VISION 69

Figure 5.16: GLCMs for various shifts
(shown with a logarithmic scale of grey
levels to bring out detail)

6
Evaluating Vision Systems

This chapter considers the way in which vision systems are assessed. The under-
lying principles are expounded and techniques such as ROC curves explained.
The statistical basis for comparing systems is presented, and two examples
of assessment presented: the first assesses the histogram-based approach to
content-based image retrieval expounded in Chapter 3 while the second explores
the use of a support vector machine on a dataset of handwritten digits.

6.1 Introduction

It has already been stated that computer vision is a practical discipline,
and some working — though not necessarily good — vision systems have
been explored in previous chapters. We have now reached the point
where a deeper understanding of how vision systems can and should be
assessed is needed. Assessment is an important part of both research
and development: for research, if you cannot measure how well a system
works, you cannot be doing science; and in development, you want your
system to be more effective than those of your competitors.

The first thing to understand is that an assessment of the effectiveness
of a vision system can currently be made only by running it on imagery for
which the correct answer is known — what is normally termed ground truth.
In cases where the imagery are synthetic, such as the use of computer-
generated images when we look at stereo vision in Chapter 9, the correct
answer is known precisely. However, vision systems are more commonly
assessed using real imagery and the ‘ground truth’ might actually contain
inaccuracies too. Let us take, for example, the application of detecting
cancerous tumours in mammograms (X-ray images of human breasts):
this is an important application because breast cancer used to be the
largest killer of women in the UK, so much so that the NHS introduced a
regular screening programme. Whether a particular feature in an X-ray is
a tumour or not is assessed by a radiologist and it is natural to use their
identifications as the ‘ground truth’ for training a vision system. However,
if the radiologist has made an incorrect diagnosis of a particular feature,
the assessment of the effectiveness of the vision system is measuring how
well it agrees that the radiologist’s opinion rather than the underlying truth
of whether or not features are cancerous. For that reason, ground truth
imagery is often assessed by several experts and their consensus taken.

There are cases in which ground truth capture need not involve ex-

perts. The Galaxy Zoo project and its successors invite ‘citizen scientists’ to
classify images for which automatic classification approaches work poorly.
As well as yielding results of direct interest to scientists, these kinds of
project deliver large quantities of valuable training data to computer vis-
ion researchers: for example, the author has about 800,000 images with
ground truth classification from the first Galaxy Zoo project, two orders of
magnitude more than would normally be available. Crowd-sourcing has
much value in computer vision.

Most modern vision systems involve an element of adaption. This may
be a case of the developer tailoring the values of convolution masks etc.
to work well with the imagery or, more commonly, it may involve using a
machine learning technique. Either way, it is essential that the data used
for developing or training the vision system are disjoint (i.e., are separate
from) the data used for testing.

6.2 Evaluating a vision system

Almost all vision systems take in images and yield labelled results. In
the mammogram example discussed above, a labelled result might be
‘cancerous’ or ‘benign’ for each feature identified in an image. For a face
recognition system, an image would be labelled with the identity of a
person. An assessment procedure must present images from the test set to
the vision system in turn and see whether it identifies features and assigns
them the correct labels. The vision community usually works on the basis
that there are four possible outcomes:

true positive (TP): the feature has been found and allocated the correct
label;

false positive (FP): the feature has been found and allocated an incorrect
label;

false negative (FN): a feature that should have been found was not;
true negative (TN): a feature was not present and no feature was found.

This is, in this author’s view, an over-simplification as it does not, for
example, distinguish between a feature that was missed and a program
crash, or for totally spurious results.

Two of these cases may seem strange at first sight and so merit some
explanation. The true negative would occur if we were trying to identify
cancers in mammograms and we presented an image of, say, a giraffe:
the vision system definitely shouldn’t identify any lesions. A false positive
arises if, say, a lesion was correctly found in a mammogram but identified
as benign when it is actually cancerous. In this context this is a dangerous
mistake to make, much more so than the identifying a benign tumour as
cancerous — you should think about why this is so.

It should be appreciated that there is always a trade-off between true
positive and false positive detection. If an algorithm is tuned to detect all
the true positive cases then it will also tend to give a larger number of
false positives. Conversely, if it is set to minimize false positive detection

EVALUATING VISION SYSTEMS

71

http://www.galaxyzoo.org

72 COMPUTER VISION

then the number of true positives it detects will likely be reduced too. This
is an important factor to bear in mind when tailoring a vision system to a
particular task.

Tables of true positives etc. are difficult to analyze and compare, so
results are frequently shown graphically using ROC or precision-recall
curves. A ROC (“receiver operating characteristic”) curve is a plot of false
positive rate against true positive rate as some tuning parameter in the
algorithm is varied. ROC curves were developed to assess the performance
of radar operators during the second World War: operators had to make
the distinction between friend or foe targets, and also between targets and
noise, from the blips they saw on their screens. Their ability to make these
vital distinctions was called the receiver operating characteristic. These
curves were taken up by the medical profession in the 1970s, who found
them useful in bringing out the sensitivity (true positive rate) and specifity
(1 —false positive rate). ROC curves are as interpreted as follows (see
Figure 6.1):

* the closer the curve approaches the top left-hand corner of the plot, the
more effective the technique is;

* the closer the curve is to a 45° diagonal, the worse it performs;
* the area under the curve is a measure of the accuracy of the technique;

* the plot highlights the trade-off between the true positive rate and the
false positive rate: an increase in true positive rate is usually accompan-

ied by an increase in false positive rate. . (1)2 B N |
Figure 6.1 shows ROC curves for very good, good and poor (worthless) % 0.6 .
tests. In practice, one usually finds that ROC curves cross, as in Figure 6.2; §. 0.4} very good
which system one would then use depends on whether a high false positive E 0.2 fv‘:)r‘:hless
rate is too large a price to pay for a high true positive one: 0_% | —
.0 02 04 0.6 0.8 1.0
* For cancer detection say, we want the TP rate to be as high as possible false positive rate

so we choose algl of Figure 6.2 and operate it close to the right edge)
Figure 6.1: Examples of ROC curves.

of the plot, accepting that it will generate more FPs. Curves closer to the upper left corner
indicate better performance, as that true
* Conversely, for a task such as secure access by face recognition, we want positive rate is being achieved with a

lower false positive rate. Note that ROC

. . curves are often drawn with logarithmic
near the left edge of Figure 6.2, accepting that people may have to try axes to separate performances close to

the FP rate to be as low as possible so we choose alg2 and operate it

several times before being authenticated. the upper left corner.

Precision and recall are calculated from TP etc. as follows:

TP 1.0 T T
recision = ———— 6.1 L .
P TP+ FP ©D 5 08
TP $ 0.6 *
recall = ———— (6.2) £
TP +FN 2 04| |
. L . . s |
We also sometimes see these combined into a single quantity, the F-measure: = 0.2p :é; H
| | T T
Feo precision x recall 6.3) O'%.O 0.2 0.4 0.6 0.8 1.0
- precision 4+ recall : false positive rate
A precision-recall curve obviously has some relationship to a ROC curve Figure 6.2: ROC curves that cross means

that one has to be careful about the
settings of tuning parameters in order to
achieve best performance.

as both encode similar information. Whereas a ROC curve is regarded as

better if it is closer to the top left corner of the graph, a precision-recall
curve is better if it closer to the top right corner. The major advantage of
precision-recall curves over ROC curves is that the former take account
of true negatives, i.e. the system rejecting incorrect data. For this reason,
precision—recall curves are slowly replacing ROC curves in assessments of
vision systems.

The author’s experience is that measures such as F are of little practical
value in assessing the performance of a vision system. Although less well
known, we have found that Matthews correlation coefficient (MCC or ¢)
is more meaningful, especially because its value is bounded into £1. Using
the notation introduced above, we can define the MCC as

TN x TP—FN x FP

¢ = (6.4)
/(TP + FP) (TP + FN) (TN + FP) (TN + FN)

6.3 Comparing vision systems

The most common way that algorithms are compared in the literature is
by means of their ROC or precision-recall curves. Curves from algorithms
being compared often cross each other, and then it is up to the user to
decide which represents the best method for their application. As a result,
comparisons of algorithms tend to be performed with a specific set of
tuning parameter values, depending on the target application.

It is becoming common to compare the performance of vision systems
using the area under the curve on a ROC plot, an approximation to the
integral of the curve. The idea is that the larger this value, the closer
it is to the top left-hand corner and so the better it is. However, this
is a particularly poor way of performing such a comparison, and for two
reasons. Firstly, this approach makes no sense in any operational context:
a vision system is operated with a single set of tuning values and hence at a
single point on the ROC curve as discused above. The critical test is which
algorithm fulfils the requirements for true and false classifications, not how
well it performs with different tuning values. The second reason is that
it takes no account of the amount of test data involved: a 2% difference
in performance in likely to be significant if 500,000 images have been
processed but not if the number of images was 50.

Thankfully, there is a better way. If one is able to run algorithms on the
same data and record the outcome of each individual test — perhaps under
the control of a test harness such as FACT from the laboratory sessions
for this module — an appropriate statistical test can be employed that
takes into account not only the number of false positives etc. but also the
number of tests. Although not yet in widespread use in the computer
vision research community, the appropriate test to employ for this type of
comparison is McNemar’s test. This is a form of the sign test for matched
paired data. Consider the 2 x 2 table of results for two algorithms in
Table 6.1.

The form of McNemar’s test that we shall use is:

(lef _Nfs| - 1)2

7% = 6.5
(st +Nfs) 65

EVALUATING VISION SYSTEMS 73

algorithm A algorithm A

failed succeeded
algorithm B Npg Nys
failed
algorithm B Ny, N,
succeeded

Table 6.1: Possible outcomes for a single
test from a pair of algorithms

74 COMPUTER VISION

where the —1 is a continuity correction. We see that the test employs
both false positives and false negatives, rather than just one of them. If
N + Ng, (ie., the number of tests where the algorithms differ) is greater
than about 20, then the value of the “Z-score” Z will be meaningful.

If algorithm A and algorithm B give similar results then Z will be near
zero. As their results diverge, Z will increase. Confidence limits can be
associated with the Z value as shown in Table 6.2; it is normal to look
for Z > 1.96, which means that the results from the algorithms would
be expected to differ by chance about one time in 20. Values for two-
tailed and one-tailed predictions are shown in the table as either may be
needed, depending on the hypothesis used: if we assessing whether the
performances of two algorithms differ, a two-tailed test should be used;
but if we are determining whether one algorithm performs better than the
other, a one-tailed test is needed.

Figure 6.3 shows the tails of a binomial distribution: if we want to
ascertain whether the performances differ, we are interested in either
of the two shaded regions; but if we are asking whether one algorithm
out-performs the other, we use only one tail.

Further information can also be gleaned from N, and Ng;: if these
values are both large, then we have found places where algorithm A
succeeded while algorithm B failed and vice versa. This is valuable to
know, as we can devise a new algorithm that uses both in parallel and
takes the value of algorithm B where algorithm A fails, and vice versa —
this should yield an overall improvement in accuracy. This is actually a
significant statement with regard to the design of vision systems: rather
than combining the results from algorithms in the rather ad hoc manner
that usually takes place, McNemar’s test provides a principled approach
that tells us not only how to do it but also when it is appropriate to do so
on the basis of evaluation — in other words, evaluation needs to be an
inherent part of the algorithm design process.

As a footnote to this discussion of McNemar’s test, the reason that the
FACT program you use in laboratories works on files of results rather than
just providing a user-callable routine in a module or class is to promote
the sharing of results without also having to give away the software that
created them.

6.4 Assessing colrecl

It is fairly straightforward to assess colrecl from Chapter 3 using the
FACT test harness alluded to above. A series of test images of fruit were
captured against a plain background, as shown in Figure 6.4, and used
as tests. Tables 6.3 and 6.4 are the result — try to interpret them before
reading on. Note that some classes use abbreviated names to stop the
columns becoming too spread out.

Firstly, it is notable that there are only ten tests for each class, clearly
not enough for any resulting statistics to be reliable — at least 20 are
needed if the dataset is well-behaved, and about one hundred would give
more confidence in any conclusions drawn. Having said that, it is clear
that colrecl is not particularly effective. We see that all ten test images

Z value two-tailed one-tailed
confidence confidence

1.646 90% 95.0%
1.960 95% 97.5%
2.326 98% 99.0%
2.576 99% 99.5%

Table 6.2: Converting Z values onto
confidence limits

Figure 6.3: The tails of a binomial
distribution

Figure 6.4: The various classes of fruit
used for assessing colrecl: banana, chili,
green apple, grapefruit, orange, pear, red
apple, tomato. (Yes, [know some people
would argue that a tomato is not a fruit.)

EVALUATING VISION SYSTEMS

75

tests TP TN FP FN accuracy recall precision specificity class
10 10 0O O 0 1.00 1.00 1.00 0.00 banana
10 7 0 3 0 0.70 1.00 0.70 0.00 chili
10 6 0 4 0 0.60 1.00 0.60 0.00 gapple
10 10 0 0 0 1.00 1.00 1.00 0.00 gfruit
10 8 0 2 0 0.80 1.00 0.80 0.00 orange
10 9 0 1 0 0.90 1.00 0.90 0.00 pear
10 5 0 5 0 0.50 1.00 0.50 0.00 rapple
10 9 0 1 0 0.90 1.00 0.90 0.00 tomato
80 64 0 16 0 0.80 1.00 0.80 0.00 overall

Table 6.3: Error rates from colrecl.res
expected

actual banana chili gapple gfruit orange pear rapple tomato
banana 10 0 0 0 0 0 0 0
chili 0 7 0 0 0 0 0 1
gapple 0 0 6 0 0 1 4 0
gfruit 0 0 0 10 2 0 0 0
orange 0 0 0 0 8 0 0 0
pear 0 0 0 0 0 9 0 0
rapple 0 0 3 0 0 0 5 0
tomato 0 3 1 0 0 0 1 9

were recognised correctly only for banana and grapefruit, while red apples
were recognised poorly. In this case, the ‘recall’ and ‘specificity’ columns
of Table 6.3 are of little value.

Table 6.4 summarizes what the test images were classified as. Here, the
element at row r and column c indicates that class r was obtained when
class ¢ should have been found; for example, there were three cases in
which a chili was incorrectly identified as a tomato and one case where
a tomato was incorrectly identified as a chili. Intuitively, we might have
expected these to be confused more often because they are of similar
colours. Interestingly, the red apple was often confused with a green
one, indicating that the way colrecl bundles its colours together when
determining the histograms to compare is a poor one.

6.5 Recognising Handwritten Digits

As a second example of evaluation, we turn our attention to one of the
standard test cases for machine learning, the MNIST database of hand-
written digits [LeCun et al., 1998]. This is because the database has been
carefully pre-processed to remove variations other than the shapes of the
characters written. The training set is large yet the individual images are
small, only 28 x 28 pixels, so that the overall computation time remains
manageable. Some typical examples are shown in Figure 6.5 and the sizes
of the training and test sets are presented in Table 6.5.

Table 6.4: Class confusion matrix
calculated from colrecl.res

76 COMPUTER VISION

Rather than use colrecl, which we now know is pretty poor at doing
this kind of thing, we shall use MNIST with a fairly state-of-the-art machine
learning algorithm, a support vector machine (SVM). A SVM was trained
using the 60,000 training images (which takes about 10 minutes on the
author’s computer) and then tested on the 10,000 test images; tables 6.6
and 6.7 present the statistics and class confusion matrix respectively on
the test images. (These were calculated using FACT’s big brother, which
explains why they look a little different.) Accuracy on all the digit classes is
good, with 96% accuracy being obtained in each case. The class confusion
matrix shows that there are few places where one digit is consistently
mistaken for another.

One thing that these tables show that were missing in those from FACT
concerning fruit classification is the mention of classes called reject and
fail. reject occurs when the program being tested believes the image
presented to it is invalid (in this case, rather than a digit, the image might
contain a coffee cup or giraffe). Conversely, fail occurs when the program
crashes. A good program will have no fail cases!

In most evaluation studies in the computer vision domain, there are
few datasets that explicitly test the reject case — there is no testing for
true negatives, using the terminology introduced earlier in this chapter.
The author believes that this is a mistake, being one of the major reasons
that computer vision systems have a reputation for being fragile, seemingly
working well in the research laboratory but failing dismally when used in
the field.

NEENERONE
EEENNECONE
NEAMNNENBNE
Wil JulolG-Te
NENENEEON
RENRANNAN
GEERNNGER
NP NN
NENEERENE
slejolofofolo]ofo

0] /]2]3])5 6]712] 5]

Figure 6.5: Examples from the MNIST
database

W

class training test
0 5923 980
1 6742 1135
2 5958 1032
3 6131 1010
4 5842 982
5 5421 892
6 5918 958
7 6265 1028
8 5851 974
9 5949 1009

Table 6.5: Distribution of the 60,000
training and 10,000 test images amongst
the classes in the MNIST database

tests TP TN FP FN accuracy recall precision specificity class
980 972 0 8 0 0.9918 1.0000 0.9918 0.0000 0
1135 1126 0 9 0 0.9921 1.0000 0.9921 0.0000 1
1032 1013 0 19 0 0.9816 1.0000 0.9816 0.0000 2
1010 993 0o 17 0 0.9832 1.0000 0.9832 0.0000 3
982 963 0 19 0 0.9807 1.0000 0.9807 0.0000 4
892 867 0 25 0 0.9720 1.0000 0.9720 0.0000 5
958 944 0O 14 O 0.9854 1.0000 0.9854 0.0000 6
1028 997 0 31 0 0.9698 1.0000 0.9698 0.0000 7
974 949 0 25 0 0.9743 1.0000 0.9743 0.0000 8
1009 973 0 36 0 0.9643 1.0000 0.9643 0.0000 9
0 0 0 0 0 0.0000 0.0000 0.0000 0.0000 reject
0 0 0 0 0 0.0000 0.0000 0.0000 0.0000 fail
10000 9797 0 203 0 0.9797 1.0000 0.9797 0.0000 overall

A similar set of results, this time training the SVM with significantly

different settings, is shown in tables 6.8 and 6.9. It can be seen, though with
some difficulty, that the accuracy is worse and the classes significantly more
confused. However, it is not clear whether the performance differences
are significantly different in the statistical sense.

When a comparison is made using McNemar’s test (Table 6.10), the
difference in performance is much more apparent. The one case where

Table 6.6: Table of error rates for T1.000

EVALUATING VISION SYSTEMS

true class returned by algorithm
class 0 1 2 3 4 5 6 7 8 9 reject fail
0| 972 0 1 0 0 3 1 1 2 0 0 0
1 0 1126 3 1 0 1 1 1 2 0 0 0
2 5 1 1013 0 1 0 1 7 3 1 0 0
3 0 0 2 993 0 2 0 6 5 2 0 0
4 0 0 5 0 963 0 3 0 1 10 0 0
5 3 0 0 10 1 867 4 1 4 2 0 0
6 5 2 1 0 2 3 944 0 1 0 0 0
7 1 7 10 2 2 0 0 997 1 8 0 0
8 3 0 2 6 5 2 2 2 949 3 0 0
9 3 3 1 7 10 1 1 7 3 973 0 0
reject 0 0 0 0 0 0 0 0 0 0 0 0
fail 0 0 0 0 0 0 0 0 0 0 0 0
Table 6.7: Class confusion matrix for
T1.000
T0.400 out-performs T1.000 is for digit ‘1’, and the number of times this
happens is not enough to make the value of Z significant, yet the T1.000
case is the better for every other digit and overall, with Z? = 5553, three
orders of magnitude larger than the critical value of 1.96!
tests TP TN FP FN accuracy recall precision specificity class
980 189 0 791 0 0.1929 1.0000 0.1929 0.0000 0
1135 1127 0 8 0 0.9930 1.0000 0.9930 0.0000 1
1032 416 0 616 0 0.4031 1.0000 0.4031 0.0000 2
1010 77 0 933 0 0.0762 1.0000 0.0762 0.0000 3
982 843 0 139 0 0.8585 1.0000 0.8585 0.0000 4
892 546 0 346 0 0.6121 1.0000 0.6121 0.0000 5
958 136 0 822 0 0.1420 1.0000 0.1420 0.0000 6
1028 801 0 227 0 0.7792 1.0000 0.7792 0.0000 7
974 28 0 946 0 0.0287 1.0000 0.0287 0.0000 8
1009 27 0 982 0 0.0268 1.0000 0.0268 0.0000 9
0 0 0 0 0 0.0000 0.0000 0.0000 0.0000 reject
0 0 0 0 0 0.0000 0.0000 0.0000 0.0000 fail
10000 4190 0 5810 0 0.4190 1.0000 0.4190 0.0000 overall

77

Table 6.8: Table of error rates for T0.400

6.6 Comparing Performance Figures on Different
Datasets

The comparison process described above depends critically on having
access to the same dataset. This is reasonably common these days but
authors rarely make available either their software or the outcomes for
each of the test inputs, the kind of information needed for McNemar’s test.
However, it still is possible to carry out some kind of statistical examination
of the performance figures, as long as there is some indication of accuracy.

78 COMPUTER VISION

true class returned by algorithm
class 0 1 2 3 4 5 6 7 8 9 reject fail
0| 189 3 508 0 86 112 0 82 0 0 0 0
1 0 1127 0 0 0 6 0 0 2 0 0 0
2 0 452 416 0 125 17 0 22 0 0 0 0
3 0 688 101 77 16 95 0 33 0 O 0 0
4 0 68 21 0 843 2 0 47 0 1 0 0
5 0 136 58 1 107 546 0 4 0 O 0 0
6 0 96 205 0 3% 104 136 21 O O 0 0
7 0 115 68 0 36 7 0 801 o0 1 0 0
8 0 498 120 6 207 101 0 11 28 3 0 0
9 0 130 28 1 526 22 0 275 0 27 0 0
reject 0 0 0 0 0 0 0 0 0 0 0 0
fail 0 0 0O o 0 0 0 0 o0 o0 0 0
Table 6.9: Confusion matrix for T0.400
N Ngs Ngg Ngy Z better class

189 783 0 8 781.0013 T1.000 O

1121 5 6 3 0.0000 TO0.400 1

414 599 2 17 591.0416 T1.000 2

77 916 0 17 914.0011 T1.000 3

838 125 5 14 108.9308 T1.000 4

536 331 10 15 300.2933 T1.000 5

136 808 0 14 806.0012 T1.000 6

798 199 3 28 188.2426 T1.000 7

28 921 0 25 919.0011 T1.000 8

27 946 0 36 944.0011 T1.000 9

0 0 0 0 0.0000 neither reject
0 0 0 0 0.0000 neither fail
4164 5633 26 177 5553.4964 T1.000 overall

Table 6.10: Comparison of results for
T1.000 and T0.400 using McNemar’s test

Let us assume we want to compare two accuracy ﬁgures, 51 successes

from N; tests and S, successes from N, tests. These mean we have prob-

abilities of success given by

Sy

S
plz—landplz—.

Ny Ny

We first compute the factor

and then the test statistic

Ip1 —p2l

JPa-2) (% + %)

Exactly as with McNemar’s test, you can use the critical value of Z = 1.96

(6.6)

6.7)

to decide whether or not the two performance figures are different (at the

EVALUATING VISION SYSTEMS 79

one in twenty or 5% level). For the interpretation to be valid, you need
to be confident that the two datasets involved are equally difficult for the
vision algorithms you are examining.

7
Intermediate-Level Vision

The techniques examined in Chapter 5 work on regions of images without
any knowledge of what those regions are. In this chapter, we explore finding
features such as edges and corners and how they may be described. We then
take a look at SIFT and similar techniques, which are able to match features
in one image with the same features in other images. We close the chapter by
examining a technique that use a similar approach for identifying texture.

7.1 Introduction

Detecting the various types of feature mentioned in Chapter 5 is not the
end of the story. For example, in developing a “co-pilot” aid for a person
driving a car discussed later in this chapter, we might want to identify
the white lines painted along the edges of many UK roads so that we can
alert the driver if they stray out of their lane. We shall start with the
detection of straight lines and corners, as they turn out to be useful in
many contexts, then move on to consider describing such features. We first
look at a technique known as the Hough transform for pulling the equation
of lines from images. We then look at techniques matching features found
in images as this capability underlies some of the most important modern
vision applications.

7.2 The Canny edge detector

For a long time, edge detection was regarded as one of the main problems
in computer vision, at least partly because humans find that line drawings
of scenes are easy to interpret and processing lines rather than entire
images is presumed to be easier for computers too — though the author
doesn’t follow this logic himself. Nevertheless, edge detection remains a
topic of interest as the problem certainly has not been solved, especially
for natural scenes.

We shall first consider the edge detector due to John Canny, which
probably remains the most-used edge detector in image analysis and com-
puter vision. The development of the Canny edge detector actually has
an Essex connection. A researcher called Mike Brady was a lecturer in
Essex’s Department of Computer Science and he had a PhD student called
Libor Spacek who was working on the problem of edge detection. Part-way
through Libor’s research programme, Mike took up an appointment at MIT

where he got a Masters student, John Canny, to take a somewhat cut-down
approach to the careful maths underlying Libor’s edge detector. This was
published in an MIT report around 1984, then in a journal paper [Canny,
1986] — and was taken up by most of the companies and institutions
researching computer vision in the USA. Incidentally, Mike returned to the
UK a little later in the 1980s as a professor in the Department of Engin-
eering Science at Oxford and became one of the prime movers of vision
research in the UK. He moved from robot vision into medical imaging
research in the 1990s and was knighted. He has now retired. Libor was a
member of academic staff in CSEE until his retirement a few years ago.
The Canny edge detector is based around three principles:

1. it should respond only to edges, and all edges should be found;
2. edges should be found in the correct places; and

3. multiple edges should not be found where only a single edge exists.

Canny considered how these three criteria could be obtained at a step edge
in an image. Without going into the mathematics, he ended up with the
following five-step algorithm.

Step 1. Convolve the image with a Gaussian-shaped mask (see Figure 7.1)
to smooth the image and reduce the effects of noise. The s.d. of the
Gaussian controls the amount of smoothing obtained, so this part of the
algorithm can be tailored to the characteristics of the data.

Step 2. Find differences in the horizontal and vertical directions, aver-
aging over 2 x 2 squares of the image S:

(SO, y+1)=S(x,¥)+(S(x+1,y+1)=S(x+1,y))

H(x,y) = 5
(7.1)
v((S +1,y)=S(,y) +(S(x+ 1,y +1)=S(x,y +1))
x,y)= 5
(7.2)

Step 3. Find the magnitudes and directions of these gradients (Fig-
ure 7.2):

M(x,y) = +/V(x,y)2+H(x,y)? (7.3)
1 V(xYy)

0(x,y) =tan ' ——=~ 7.4

Coy) =tan) 74

Note that, when calculating 6 (x, y) on a computer, you need to use the
atan2 function, which returns correctly a value in the range —m to +,
rather than atan, which returns a value in the range —m/2 to +m/2:
atan2 takes into account the signs of both of its arguments in determining
the angle.

INTERMEDIATE-LEVEL VISION 81

0.40 |- f

0.20

0.00 |- -
| | |

—2.0 0.0 2.0

Figure 7.1: Profile across a Gaussian
mask

H

Figure 7.2: Obtaining M and 6 from H
and V

Figure 7.3: Quantization of 6 (x, y) into
four directions

82 COMPUTER VISION

Step 4. A broad edge in the image will tend to produce two edge re-
sponses, one at either side. This violates our third criterion, so something
must be done to reduce any broad lines in M (x, y). The approach taken
is to perform non-maximum suppression, i.e. to remove all those parts of
the edge except where there is the greatest local value. This is carried out
in two stages (Figure 7.4):

* Firstly, 6(x,y) is quantised into four values that indicate roughly the
direction of the edge gradient (Figure 7.3).

* Then, for each 3 x 3 neighbourhood in M(x, y), the value at x,y is
compared with its neighbours along the four possible gradient directions
and, if M (x, y) is less than any neighbour, it is set to zero.

The result is that any broad edges in M (x, y) are thinned, usually to be a
single pixel in width.

Step 5. Even after non-maximum suppression, there will usually be many
false edge fragments, due to texture and noise in the image. These typically
have much poorer contrast than edges obtained from the boundaries of
objects, which is what computer vision is more interested in. To reduce
the effects of these false edge segments, we attempt to link them together.
In the Canny detector, we use a thresholding strategy which employs
two thresholds, 7; and 7y, where typically 7 ~ 27;. This scheme is
sometimes called hysteresis thresholding. Simply thresholding M (x, y)
using a sensibly-chosen value for 75 will reduce the number of false edge
segments but the true edge segments will inevitably contain gaps. The
idea is to try to join up edge segments.

When the contour formed by following successive pixels with values >
Ty (shown in red in Figure 7.5) ends, the hysteresis thresholding algorithm
looks in the 3 x 3 region around that pixel for any neighbours whose value
is > 7 (shown in black in Figure 7.5). If so, it continues the edge to that
pixel. This process continues until there are no suitable neighbours or the
another edge segment with value > 75 has been found.

As we can see from Figure 7.8, Canny’s edge detector gives better results
than the Laplacian or Sobel detectors — which it should of course since it
is somewhat more sophisticated. However, we can also see that the Canny
result is far from perfect on images of natural scenes. For robot vision
in research laboratories, where illumination tends to be strong and the
boundaries of objects straight and well-defined, it is fairly effective.

Edge detection, no matter how well done, suffers from a significant
drawback for image interpretation. As Figure 7.6 shows, when an edge
between (say) a dark object and a white background fills the field of view,
it is impossible to determine which part of an edge is associated with which
part of the object; this is known as the aperture problem. Thus, for image
analysis, edges are actually of limited value. In practice, it is much more
useful to identify the locations of corners in an image, as they are related
to characteristic features of the objects that created them. So let us look
at how to find corners.

original ——
non-max suppressed ——

Moxy)

line position

Figure 7.4: Non-maximum suppression

Figure 7.5: Linking together edge
segments using hysteresis thresholding

(a) You cannot tell which part of an edge
you see

(b) It is easy when a corner is visible

Figure 7.6: The aperture problem

7.3 Moravec’s corner detector

Like so many other image processing operators, the Moravec corner de-
tector is based around the processing of a region with a mask of coefficients.
In this case, the strategy is to devise a mask with the property that con-
volution with the mask should produce a maximum in its output when it
is centred on a corner, and a large decrease when the mask moves away
from the corner.

If we think about this, we’ll see that there are three main cases, shown
in Figure 7.7:

A: if the region of the image is fairly uniform, all shifts result in a small
change in response;

B: if the region straddles an edge, a shift along the edge produces a small
change but a shift perpendicular to the edge produces a large change;

C: at a corner or isolated point, all shifts produce a large change.

If we write I(x, y) as the value of the pixel at x,y and W (u,v) as the
coefficient in the mask for some values of (u,v), then we can write this as

E(x,y) :ZW(u,v) (I(x+uy+v)—Iwv))?.

(7.5)
If we consider shifts in x, y of (1,0), (1,1), (0,1) and (—1,1), then we
explore the same four directions that we used when quantising 6 (x, y) in
the Canny edge detector (Figure 7.3), obtaining four values corresponding
to the four shifts. We retain the minimum of the four at each and store
the result in an array the same size as the image. We then look for local
maxima in this array above some threshold value to identify corners.

7.4 The corner detector of Harris and Stephens

As mentioned above, the Moravec detector represents the state of the art in
around 1987. Subsequent researchers have improved on this, in particular
in work of [Harris and Stephens, 1988], which combines the ideas of
Moravec and Canny and has been the most widely-used corner detector
since the early 1990s. The advance due to Harris and Stephens seems
fairly straightforward, given our knowledge of Canny’s edge detector:
rather than considering shifted patches, Harris and Stephens considered
the direction of the derivatives at the corner directly.

Consider a patch of a grey-scale image I(u,v) shifted by (x,y). The
weighted sum-squared difference is given by (7.5). If one expands I (u +
x,v -+ y) as a Taylor series then, if I, and I , are the partial derivatives of
I in the x- and y-directions respectively,

Hu+x,v+y)~I(u,v)+xl(u,v)+yl,(u,v)
which means that

E(x,y)~ Zw(u,v) (xI(w,v)+yI(u,v))>.

INTERMEDIATE-LEVEL VISION 83

LA

Figure 7.7: The different cases con-
sidered in the Moravec corner detector

84 COMPUTER VISION

(e) Result of Harris & Stephens

Figure 7.8: Comparing the results of
different edge and feature detectors

If we calculate the matrix of partial derivatives at point (x,y)
2
()
LI, I

S(x,y)~(x y)A(;)

will have a large variation irrespective of direction x and y. Rather than

then

calculate S(x,y), Harris and Stephens calculate det(A) —ktrace?(A), x
being a tuning parameter usually in the range 0.04-0.15, to determine
whether a corner is present. The output from Harris and Stephens is shown
in Figure 7.8. These days, it is able to run at video rate on off-the-shelf
hardware.

7.5 Other corner detectors

Work subsequent to that of Harris and Stephens has produced more soph-
isticated detectors, two of which are worthy of mention here. The first is
the smallest univalue segment assimilating nucleus (“SUSAN” — a strained
acronym if there ever was) operator of Steve Smith and Mike Brady (again)
[Smith and Brady, 1997]. An example of its output is also shown in Fig-
ure 7.8.

Secondly, Edward Rosten and colleagues at Cambridge developed the
FAST corner detector [Rosten et al., 2010]. This is based on a particularly
simple observation: at a corner, more than half the pixels will be dark or
light, as illustrated in Figure 7.9. Although some sophistication is required
to make FAST work well, a C implementation is easily able to operate at
video rates. The author’s experience of FAST is that it yields huge numbers
of spurious corners.

7.6 The Hough transform for straight lines

Although operators like Canny’s edge detector are fairly good at identifying
edges in images, they rarely deliver accurate results. For an edge in an
image which is perfectly straight, an edge detector’s output will often
contain breaks or even wiggles (Figure 7.10). Hence, it would be useful
to have a technique that lets us improve the output. Moreover, an edge
detector only does half of what we typically want: it identifies which pixels
belong to an edge but not what the parameters of that edge are (i.e., what
the equation of the line following the edge is).

This is where the Hough (pronounced “huff”) transform comes in. It
is a general technique, applicable anywhere one needs parameters to be
estimated. We shall restrict our discussion to detecting straight lines in
images but it is also widely used for identifying circles, for example. The
method wasn’t actually developed for image analysis: Paul Hough patented
his technique in the USA in the early 1960s for identifying the tracks left
by particles in bubble chamber images; it was adapted for use in image
analysis in the 1970s and became popular with vision researchers in the
1980s. It is now one of the most important tools in the vision toolbox.

INTERMEDIATE-LEVEL VISION 85

Figure 7.9: The FAST corner detector
(from http://mi.eng.cam.ac.uk/
~er258/work/fast.html)

Figure 7.10: Edge detectors usually
deliver only segments of edge

http://mi.eng.cam.ac.uk/~er258/work/fast.html
http://mi.eng.cam.ac.uk/~er258/work/fast.html

86 COMPUTER VISION

A line in 2D can be described using the equation
y=ax+b (7.6)

where a and b are parameters that describe the line, the gradient and
intercept respectively. The goal of the Hough transform is to find values
for them such that as many edge points as possible lie on the line they
describe.

If we had to program this ourselves, what approaches could we take? We
could search for an edge point and then look in its 3 x 3 neighbourhood for
other edge points, and so on, trying to trace along the line — but this runs
into problems if there are breaks or if the line is not straight. Alternatively,
for each pixel in the image, we could draw a straight line at every possible
angle and count the number of image pixels that lie exactly on them —
but this would takes a long time to run.

The Hough transform takes a different approach, though rather in the
spirit of the second alternative discussed above. If we re-write (7.6) in the
form

b=-xa+y (7.7

then we can now think of x and y as being the parameters of a straight
line and a and b as variables — in other words, this is a line in (a, b) space
parameterized by x and y. A single point in (x, y) space describes a line
in (a, b) space, and another point in (x, y) space will give rise to a line
in (a, b) space with a different gradient and intercept, as illustrated in
Figure 7.11. Although points that lie on the same line in (x, y) space yield
different lines in (a, b) space, those lines all cross in the same place, and
the values of a and b at that point are the gradient and intercept of the
line in (x, y) space.

| 7 ‘\ One point in (x,y) gives a line
7 TR in the (a,b)-plane

b A y=1x61

(x,y)-space

(a,b)-space

What we do in practice is form an ‘accumulator,” a 2D array indexed by a
and b. Then we consider each pixel in the image in turn. For each pixel that
appears to be part of a line, we increment those values in the accumulator
that correspond to all possible values of a and b. Then, when we have
processed all pixels in the image, we look for peaks in the accumulator
array.

Figure 7.11: Illustration of computing
the Hough transformation (from Anne
Solberg’s lecture notes)

http://www.uio.no/studier/emner/matnat/ifi/INF4300/h09/undervisningsmateriale/hough09.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF4300/h09/undervisningsmateriale/hough09.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF4300/h09/undervisningsmateriale/hough09.pdf

y

INTERMEDIATE-LEVEL VISION 87

In practice, the procedure described in the previous paragraph does not
work well because a vertical line has a = co. However, we can represent
a straight line in parametric or Hessian normal form as r

xcosO + ysinf =r (7.8)

using parameters r and 8 — see Figure 7.12 [Duda and Hart, 1973]. Each
point in the (x, y)-plane gives a sinusoid in the (r, 8)-plane, so M co-linear (@

point lying on the line of (7.8) gives rise to M curves that intersect at (r,)

in the parameter p]ane‘ Figure 7.12: Conventional and paramet-

1 . eric representations of a line
We use the same approach of filling an accumulator array, but drawing in P

sinusoids rather than straight lines. When the accumulator has been filled,

one looks through it for peaks; these yield the (r, 8) values corresponding
to the lines that have been found. It is normal to sort them into descending
order of peak height, as the highest peaks have the most number of image
pixels contributing to them and hence are the longest lines. Python code
that implements all of these stages is shown below, and an image and its
Hough transform are shown in Figure 7.13.

(Hough transform) =

def find_peaks (im, threshold=10):
2 ny, nx, nc = 1im.shape
peaks = list ()

4 for y in range (1, ny-1): P

for x in range (1, nx-1):
6 if im[y,x,0] > im[y-1,x-1,0]
7 and im[y,x,0] im[y-1,x ,0]
and im[y,x,0] im[y-1,x+1,0]
9 and im[y,x,0] im[y ,x-1,0]

11 and im[y,x,0] im[y+1,x-1,0]
12 and im[y,x,0] im[y+l,x ,0]

PP

>
>
>
10 and im[y,x,0] > im[y ,x+1,0]
>
>
>

13 and im[y,x,0] im[y+1,x+1,0]
14 and im[y,x,0] > threshold:

15 peaks.append ([im[y,x,0], y, xI1)

16 # Return the peaks sorted into descending order.
1 peaks.sort (reverse=True)

18 return peaks

larger)

20 def hough_line (im, nr=300, na=200, threshold=10, max_peaks=None):
21 im = reshape3 (im)

22 ny, nx, nc = sizes (im)

23 acc = image ((nr, na, 1))

24 ainc = math.pi / na

25 rinc = math.sqrt (nyx*2 + nx*x2) / nr

2 # Fill arrays with the radius and angle values, to be returned.
28 rvals = []

29 for i in range (0, nr):

30 rvals += [1 * rinc]

32 avals = []
for i in range (0, na):
34 avals += [i * ainc]

Figure 7.13: An image and its Hough
transform (presented so that black is

88 COMPUTER VISION

35

36 # Find non-zero points and update the Hough accumulator.
37 for y in range (0, ny):

38 for x in range (0, nx):

39 val = im[y,x,0]

40 if val > 0:

a1 for ia in range (0, na):

42 ang = ia * ainc

43 r = x * math.cos(ang) + y * math.sin (ang)
44 ir = int (r / rinc)

45 acc[ir,ia,0] +=1

46

47 # Find peaks in the accumulator.

48 peaks = find_peaks (acc, threshold=threshold)

49 if max_peaks is None:

50 max_peaks = len (peaks)

51

52 return peaks, acc, rvals, avals

What kinds of things are the Hough transform used for? The answer is
really anywhere you need to find lines from line segments. For example,
Figure 7.14 shows it being used as part of a driver’s aid, alerting the driver
whenever they are found to be straying outside their lane.

Figure 7.14: The Hough transform can be
used in a lane-following system

Car Going Outside the Lane

A couple of footnotes are in order here. A line running diagonally
across the middle of the image must contain more pixels than a short one
running near a corner, so the Hough transform has an inherent bias; there
are ways of correcting for this bias, though we shan’t go into them here.
Similarly, rather than incrementing the value in the accumulator array
by unity irrespective of the quality of an edge pixel, one can use its edge
strength. Other minor improvements are also possible.

You will see from the above that the Hough transform procedure can be
applied to any case where one needs to determine the values of parameters
in an equation. It is commonly used to find circles in images, for example

the irises and pupils of people’s eyes. If you're interested in finding out
more about the Hough transform, there is an excellent discussion in [Burger
and Burge, 2008], or look on the web.

7.7 Describing corners

Detecting corners may help us detect the boundaries of a feature (an
obstacle in front of a robot, say) but that is of limited value. It is much
more useful if one is able to relate the positions found in one frame of
a video sequence to those in the next frame; or, with a pair of cameras
looking at a scene, which feature found in the image from the left camera
image matches a feature found in the right camera one. To be able to do
that, one needs to be able to describe corners in some way, and then see
how similar the descriptors are to those calculated from different frames
or cameras.

The best identifying characteristic of a corner is its internal angle, and
here at Essex we have shown [Kanwal et al., 2014] that this can be found
from the values calculated as part of the Harris and Stephens corner
detector. This forms the basis of a way of describing and matching corners
— and our ARC descriptor is able to do so for thousands of corners at video
rate on modest hardware. We found that its performance was similar to
that of the BRIEF [Calonder et al., 2010] descriptor we shall consider below.
However, neither ARC or BRIEF copes well with changes of orientation
or scale, such as when a robot is moving rapidly towards an obstacle.
For real-time vision, the current state of the art is the ORB (“oriented
BRIEF”) [Rublee et al., 2011] descriptor.

The way in which BRIEF works is surprisingly simple. Given a patch
of size S x S encompassing a corner in the image I, some N locations
(x;,y;) in the patch are chosen and a series of ‘tests’ are made for different
combinations of i and j:

o {1 if I(x;, ;) <I(xj,y;) 7.9)

0 otherwise

Each of these comparisons yields a single binary number, so it is easy to
combine N these into a string of bits — typical values of N are 128, 256
and 512. (You will see when we consider machine learning techniques
that there are similarities between this approach and the one used by the
WISARD ‘neural network’ discussed in Chapter 10.) Different approaches
to choosing the N locations in the patch encompassing the corner yield
descriptors with slightly different performances; it seems that selecting
the positions randomly is as good a scheme as any other, though one has
to be careful to ensure the same random positions are used whenever a
descriptor is calculated.

Comparing the bit-strings from different patches is done by calculating
the Hamming distance, the number of positions for which the bit-strings
differ, and this can be done using the exclusive-OR (XOR) operator —
which is why BRIEF descriptors can be matched at video rates.

The problem with BRIEE like our ARC descriptor, is that it is affected
badly by rotations in the image — the randomly-chosen places at which

INTERMEDIATE-LEVEL VISION 89

90 COMPUTER VISION

the comparisons take place do not lie in the same places relative to the
rotated corner. This is circumvented to some extent in ORB: it positions
the corner in the centre of the patch, then computes the intensity-weighted
centroid of the patch. The direction of the line from this corner point to
the centroid gives the orientation. To improve the rotation invariance,
moments are computed at x and y positions which lie in a circular region
of radius r, where 2r < S so that the circle lies within the patch, starting
from the line from the corner to the centroid. Matching of ORB descriptors
is also done by XOR. Both BRIEF and ORB are available within OpenCV.

7.8 SIFT and related techniques

David Lowe’s Scale-Invariant Feature Transform (SIFT) [Lowe, 2004] de-
tector actually preceded the development of the corner descriptors de-
scribed above. SIFT was the first workable operator that was able to
calculate and match consistent features that were reasonably independent
of scale and orientation — in fact, it quickly became the de facto standard
for feature detection and is still the yardstick against which we measure
the performance of other feature detectors. SIFT is now part of OpenCV; a
program to compute features on images and display the result is shown
below:

(Compute and display SIFT features) =
1 #/usr/bin/env python3

> "Compute_and_display SIFT_keypoints."
import sys, cv2

s # Read the image and convert it to grey-scale.
6 im = cv2.imread (sys.argv[1])
7 gim = cv2.cvtColor (im, cv2.COLOR_BGR2GRAY)

o # Create a SIFT detector and apply it to yield keypoints.
10 sift = cv2.SIFT_create ()
11 kp = sift.detect (gim, None)

15 # Mark the keypoints on the image and display the result.
14 img = cv2.drawKeypoints (gim, kp, im)

15 cv2.imshow ("SIFT_keypoints_of_" + sys.argv[l], im)

16 cv2.waitKey (0)

The result of applying this program to our familiar image of the Essex
campus is presented in Figure 7.15.

SIFT finds characteristic features that are independent of scale and
orientation and, for each of them, calculates a descriptor of (typically) 128
floating-point numbers. There may be several thousand such features in
an image. Comparing objects in two images then comes down to finding
groups of similar descriptors that have all undergone the same transform-
ation. An example of matching SIFT features is shown in Figure 7.16.

How can one compare a pair of SIFT features, A and B? Several ways
are in common use:

Euclidean distance: This is practically the same as the sum-squared differ-

Figure 7.15: SIFT features marked on a
natural image

Figure 7.16: An example of feature
matching using SIFT

ence we saw in earlier:

E =1 > (Ai—B;)> (7.10)

1

Manhattan distance: This is a quicker-to-calculate alternative to E:

M=>"|A;—B (7.11)
i

It is easy to show that E < M (think of Pythagoras’s theorem) and that
is why E is a better measure than M.

Angle between vectors: If you have experience of the maths of 3D graphics
or vector analysis, this approach will make sense. If you think of A and
B as vectors, then their scalar product is given by

A-B=) A;B; = |A|[B|cos 0
i

where |A| is the length of A etc. and 6 is the angle between the vectors.
Re-arranging, we obtain

(7.12)

The last of these alternatives is widely used in information retrieval, and
the author’s own experience is that it works best on the problems he has
worked on.

Hence, to find matches between, say, objects in successive frames of a
video, the first step is to calculate the SIFT features for each frame. Then,
taking each feature of the first frame in turn, one compares it with all the
features in the second frame and chooses the one with the lowest score
from any of the criteria described above as being the best match. Clearly,
the computation time scales as O(N?2), so is slow to perform.

SIFT features can be computed quickly on systems equipped for general-
purpose GPU calculations and good GPU-based implementations of the
matching stage are starting to appear; but overall SIFT is quite slow to
work with. In our research into reconstructing coral reefs, for example
(Chapter 9), SIFT feature computation takes several hours to perform,
even on machines having state-of-the-art GPUs, while feature-matching
takes days. This restricts the size of the reef we are able to reconstruct.

There are a number of successor techniques to SIFT, such as Luc van
Gool’s SURF (Speeded-Up Robust Features) [Bay et al., 2008] which use
slightly different approaches that allow the operator to run more quickly.
In fact, in our research work, we recently compared about a dozen of
these feature detectors [Bostanci et al., 2014] and found that Wolfgang
Forstner’s SPOF [Forstner et al., 2009] is the most effective overall.

The main problem with SIFT, SURF and most related techniques is that
they tend to avoid identifying features in the vicinity of corners to ensure
they are reproducible when there is motion between frames — but corners
are often the features that are of most interest in some applications. For
example, in our research into mobile robots and navigation aids for the
visually impaired, we really need to know the boundaries of objects so

INTERMEDIATE-LEVEL VISION 91

92 COMPUTER VISION

that navigation around them is possible. So where are SIFT etc. used?
They are extremely good for tasks such as stitching overlapping images
into panoramas — if you have used Photoshop or related tools to do this,
you have probably used SIFT — tracking features between images, and
so on. They also form the mainstay of so-called “structure from motion”
techniques, which allow 3D reconstructions to be calculated from (large
numbers of) photographs, as discussed in Chapter 9.

7.9 Local binary patterns

We first considered textures in Chapter 5, where we looked at grey-level
co-occurrence matrices and Laws’ masks. We shall take another short look
at it now, looking at an operator which uses similar ideas to those in BRIEF
to described textured regions.

Local binary patterns (LBP) [Olaja et al., 1994] is a descriptor designed
specifically to describe the texture of regions and is often used in conjunc-
tion with the HOG features we shall consider in Chapter 8. In its simplest
form, the LBP descriptor is calculated as follows:

1. Divide the image, or the region of the image in which you’re interested,
into (usually) 16 x 16-pixel cells.

2. For each pixel in a cell, compare it with its eight neighbours, ‘walking’
through them either clockwise or anticlockwise. These do not have
to be its nearest neighbours; Figure 7.17 shows neighbours at several
distances from the centre pixel.

3. Where the centre pixel’s value is greater than that of the neighbour,
score it as 0; otherwise score it as 1. Walking round all the neighbours
then gives an 8-bit number.

4. Over the whole cell, compute the histogram of the frequency of each
8-bit number.

5. Optionally normalise the histogram.

6. Concatenate all the (normalised) histograms of the cells to give a
descriptor for the entire region of interest.

Just as with GLCMs and Laws’ masks, the LBP descriptor does not in itself
define the type of texture; instead, it provides evidence for subsequent
processing. These days, that is almost always done using machine learning
such as a support vector machine (Chapter 10) to classify image regions.

Figure 7.17: Local binary pattern (LBP)
neighbours (image from the Wikipedia)

https://en.wikipedia.org/wiki/Local_binary_patterns

8
Looking at Humans

We review some techniques relating to the processing and analysis of human,
and especially human faces, using computer vision. We start by examining face
detection, showing why colour-based approaches are poor and explaining the
popular technique due to Viola and Jones in some detail. Some applications
that employ face- and face-feature location and outlined. We then consider face
recognition, with emphasis on the ‘eigenfaces’ technique.

8.1 Introduction

Faces are interesting. Studies suggest that there is special ‘circuitry’ in the
brain to locate faces in images, store them, and recognise them — that
is one of the reasons we are able to ‘see’ faces in natural patterns such
as clouds, tea leaves, and so on. In this chapter, we shall consider how
faces are located in images, and then take a look at one of the techniques
that attempts to do face recognition. Largely for amusement, we shall
also look briefly at assessing the beauty of faces and a cute approach to
communicate people speaking.

There are several steps in processing images of faces, and getting to
grips with their nomenclature is a good first step. Processing an image to
identify where faces are to be found is known, not unreasonably, as face
location or face detection. Having found a face, a common requirement is
to scale it so that the eyes and mouth appear at known locations within
the image; this is known as face normalisation. Finally, determining who a
particular face belongs to is face recognition.

8.2 Locating Faces by Colour

One way to identify where a face lies in an image is by its colour. We know
that the colour of skin is determined by a compound called melanin: the
more of this that is present, the better the skin protects against ultra-violet
radiation and the darker it appears. So, the argument goes, finding skin-
coloured regions in images and determining whether they are roughly oval
is one way of identifying faces.

As the amount of melanin differs from person to person, we cannot
look for a little region in the RGB colour space. However, if we convert
the image to the HSV colour space (Chapter 3), the fact that melanin is a
specific colour should allow skin to be recognised by looking in a small

Figure 8.1: Successful detection of
human skin by colour (hue 300°-30°,
saturation 30%-70%)

94 COMPUTER VISION

range of hues and saturations. Implementing this is straightforward and
Figure 8.1 shows that it can indeed find regions of skin.

However, there are major problems with this approach. Firstly, it clearly
cannot work on monochrome (“black and white”) images, while human
vision obviously does. Secondly, the colour that skin appears is affected by
the colour of its illumination, so the hue—saturation region changes as one
moves from (say) daylight to fluorescent light. Thirdly and most crucially,
there are compounds other than melanin that have similar colouring; in
particular, some types of wood have rather similar hues to skin — Figure 8.2
gives an example failure. We are forced to conclude that using colour as a
way of locating faces is far too naive to be used in practice.

8.3 Viola-Jones: Haar Features and Adaptive Boosting

The face location technique due to Viola and Jones [Viola and Jones, 2004]
is the de facto standard algorithm, present in practically every mobile
’phone and digital camera; the algorithm is patented, so anyone who uses
it in commercial product has to pay a licence fee to Mitsubishi. As we
shall see, the approach that Viola and Jones developed is actually general,
applicable to other types of feature detection. It is implemented in OpenCV
in a way that makes performing face location straightforward, yet retains
the ability to recognise other types of object.

You should be aware that the Viola-Jones technique was developed
specifically for camera manufacturers so that cameras could auto-focus on
faces, which are the parts of photographs that people normally want to be
sharp. Hence, the algorithm works only for full-face images; it does not
work on profile views and performs fairly poorly on three-quarter views.
As we shall see, the algorithm involves processing rectangular regions,
and these will differ in landscape and portrait orientations — this is why
cameras that do face recognition always have orientation sensors.

The most important thing to realise about this technique is that, like
almost all systems that employ machine learning, it involves two phases.
Firstly, a series of classifiers are trained how to detect faces using a database
of positive (images containing faces at known locations) and negative
(images without faces) examples, a slow process. When trained, these
classifiers can be applied to any image to locate any faces that are in it, and
this executes quickly. The slow learning is not a problem as, in principle, it
need only ever be done once; but it is important that the trained classifiers
execute quickly.

To train the classifiers, features need to be extracted from images. The
approach that Viola and Jones took was to reduce any input image region
down to a fixed size (they used 24 x 24 pixels). Then, all possible Haar
features are found from this image — even for such small images, there
are 162,336 possible features, and this is one of the reasons that learning
is slow. A Haar feature is actually quite simple: it is the difference of the
sum of pixels in rectangularly-shaped image regions. Figure 8.3 shows
some example Haar features that correspond to edges and lines.

Most of the features calculated will be irrelevant but a few will help
locate the face; for example, Figure 8.4 shows one that should help identify

Figure 8.2: Skin by colour is easily
confused; wood, for example, has a
similar hue and saturation to skin (hue
300°-30°, saturation 30%—70%)

(a) Vertical and horizontal edges

(b) Vertical and horizontal lines

(c) Diagonal line

Figure 8.3: Some examples of Haar
features. In each case, the feature is a
single value calculated by subtracting
the sum of pixels lying below the white
rectangle from the sum of pixels lying
below the black rectangle.

LOOKING AT HUMANS 95

eyes. The learning algorithm finds which combination of features minim-
izes the number of mis-classifications of face and non-face image regions.
Each feature individually does not perform particularly well (it is a weak
classifier in machine learning jargon) but all the weak classifiers in com-
bination may yield a strong classifier. This procedure is known as adaptive
boosting or Adaboost; it is actually a bit more complicated than this in
detail but this is its principle. Viola and Jones found that about 200 of
these features classified faces correctly with about 95% accuracy, while
about 6,000 classified all of them.

Although the time taken to calculate 6,000 features is substantially less
than the time required for 160,000, the process can still be made more

efficient. Most of a typical image will not contain a face, so a quick test i

to ascertain whether a region definitely does not contain a face means

Fi 8.4: Haar feature that helps detect
that the other Haar features do not have to be calculated; for example, \gure aar feature that helps detec

completely uniform regions are not faces. Only when an image region e

might potentially contain a face is it worth calculating some of the other

features. Hence, Viola and Jones introduced the idea of a cascade of

classifiers, with images potentially being rejected at each step along the

cascade. Their final face detection system contained 38 stages, the first

five of which involve only 1, 10, 25, 25 and 50 features; the total number

of features required by all 38 stages is a little over 6,000.

Speeding up Haar feature calculation using integral images

The computation of the rectangular regions used to form the Haar features g 2: ; 1i 12

can be speeded up significantly. This is done using a data structure known 217 6113120 =2

in the computer vision domain as an integral image; however the data 1012]19]21] 3

structure was originally conceived for performing texture-mapping in 1njij2] 2] 9

computer graphics, where it is known as a summed-area table. Most () Original image

graphics cards have the ability to calculate integral images. T T AT 2 50 &
An example of a image and its integral image is shown in Figure 8.5. 40 69 77 99 | 130

Each pixel in the integral image is the sum of the values of it and all pixels 44 | 79 | 100 | 142 | 195

54 | 101 | 141 | 204 | 260
65 | 130 | 195 | 260 | 325

lying above and to the left of it. The first row and column are special cases:

on the first row, the value is the sum of that pixel and all those to its left, .)
(b) Corresponding integral image

while on the first column it is the sum of that pixel and all those above Figure 8.5: An image and its integral
it. The following code shows that it is fairly easy to calculate an integral image
image.

(Integral image calculation) =

1 def calc_sat_slow (im):
2 "Form_an_integral_image_from_an_image_by_the_obvious_approach."
ny, nx, nc = im.shape

4 sat = numpy.zeros ((ny,nx,1))

6 # The first row and column are special cases.
7 sat[0,0] = im[0,0]

8 for x in range (1, nx):

9 sat[0,x] = sat[0,x-1] + im[0O,x]

10 for y in range (1, ny):
11 sat[y,0] = sat[y-1,0] + im[y,0]

96 COMPUTER VISION

13 # For the remainder of the image, we add up all the pixels

14 # within a region.

15 for ylim in range (1, ny):

16 for xlim in range (1, nx):

17 regsum = 0.0

18 for y in range (0, ylim+l):

19 for x in range (0, xlim+l):
20 regsum += im[y,x]

21 sat[ylim,xlim] = regsum

22 return sat

You will see that there are four nested loops here, which means the com-
putation is pretty slow.

However, the whole point of using an integral image is that it is fast to
compute! The speed-up comes from the algebraic identity

ab=(x+a)(y+b)—(x+a)y—x(y +b)+xy (8.1)

As ab is the area of a rectangle with sides a and b, this can be interpreted
geometrically as shown in Figure 8.6. The area of the unshaded rectangle
ab can be found by taking the area of the outer enclosing rectangle and
subtracting from it the areas of the red and blue hatched regions. This
means that the cross-hatched region has been subtracted twice, so it must
then be added back in. Converting this into the manipulation of image
pixels, if we call this integral image I, then the sum of all pixels in the
rectangle with corners (x,y) and (x +a,y + b) is

I(x+a,y+b)—I(x+ay)—I(x,y+b)+I(x,y) (8.2)

which involves precisely four additions or subtractions. This means that
the sum of any rectangular region of an image, irrespective of its size, can
be calculated in constant time. Constant-time computation is a really
desirable property for any component of a real-time system and has led to
integral images appearing in a number of other vision operators, e.g. SURE
Armed with this identity, coding up the calculation of an integral image
becomes straightforward and avoids having so many nested loops:

(Integral image calculation) +=

23 def calc_sat (im):
24 "Form_an_integral_image_from_an_image."

25 ny, nx, nc = im.shape
26 sat = numpy.zeros ((ny,nx,1))
28 # The first row and column are special cases.

29 sat[0,0] = im[0,0]

30 for x in range (1,nx):

31 sat[0,x] = im[0,x] + sat[0,x-1]
32 for y in range (1, ny):

33 sat[y,0] = im[y,0] + sat[y-1,0]

(0,0) (x,0) (x+a,0)

SISSSSSSS

0,y) [

(0,y+b) (x+ay+b)

Figure 8.6: Principle of calculating an
integral image: the unshaded rectangle
is found by subtracting the areas of the
red and blue hatched rectangles from
the outer rectangle, then adding in the
cross-hatched rectangle

For the remainder of the image, we use the algebraic identity to

36 # compute integral image values at pixels.
37 for y in range (1, ny):
38 for x in range (1, nx):

39 sat[y,x] = im[y,x] + sat[y,x-1] + sat[y-1,x] - sat[y-1,x-1]

40 return sat

LOOKING AT HUMANS

You can confirm yourself that this yields identical results to calc_sat_slow.

Having formed the integral image, calculating the area of a rectangular
region of the original image can be encapsulated in a short routine that
also makes use of (8.2). This is regrettably not a single line of code because
of the way that Python array subscripts work.

(Integral image calculation) +=

.1 def get_sat (sat, ylo, yhi, xlo, xhi):

42 """Return the area of a rectangular region of an image from its
43 integral image."""
44 # We have to do a little fiddling around with indices because the way
45 # Python indices work does not quite match how an integral image is
46 # most naturally indexed...so it is not quite constant in time.
Sigh.
47 ylo -=1
48 xlo -=1
49 if ylo < 0:
50 if xlo < 0:
51 res = sat[yhi,xhi]
52 else:
53 res = sat[yhi,xhi] - sat[yhi,xlo]
54 elif xlo < 0:
55 res = sat[yhi,xhi] - sat[ylo,xhil
56 else:
57 res = sat[yhi,xhi,0] + sat[ylo,xlo,0] - sat[yhi,xl0,0] - sat[ylo,xhi,0]
58 return res

The following short program shows how the routines are used:
(Integral image calculation) +=

so # Create and fill an image.

0 im = eve.image ((10,10,1))

&1 eve.set (im, 1)

2 # Work out the correct sum of a rectangular region of 1it.
6z correct = im[4:6,1:3].sum()

e« # Form the integral image.

es sat = calc_sat (im)

s # Print out the correct sum and the value obtained from
o7 # the integral image.

s print correct, get_sat (sat, 4, 5, 1, 2)

Using Viola-Jones in OpenCV

Viola-Jones feature detection is built into OpenCV and is fairly straightfor-
ward to use. You have to give it the Haar cascade that it is to use when
identifying whatever type of object that is to be detected; this is done
by means of an XML file. Files are available for use with OpenCV for
identifying full faces; the code below uses one of them. There are also
cascades for detecting (left) eyes, smiles...and Russian number plates.

97

There are loads of cascades produced by other people on the Web. Figure 8.7: Viola-Jones face location in

The following code is a self-contained face detection routine, though action
it could be made more efficient. An example of a face detected by this
routine is shown in Figure 8.7.

98 COMPUTER VISION

(Viola-Jones face detection) =

1 def detect (im):

2 "Detect_a_face_using _Haar_cascades,_as_in_Viola-Jones."

3

4 cascade = c2.CascadeClassifier ("haarcascade_frontalface_alt.

5 faces = cascade.detectMultiScale (im, scaleFactor=1.1,

6 minNeighbors=5)

7

8 # Locate the faces and draw the surrounding rectangles on the

9 # If we are to locate eyes too, do the same with them.

10 for (x, y, w, h) in faces:

11 print "__", X ,y, Xx+w, y+h

12 reg = im[y:y+h,x:x+w]

13 cv2.rectangle (im, (x,y), (x+w,y+h), (255,0,0), 2)

14 P :
15 # Return the faces found and the marked-up image. (a) Original image
16 return im, faces

8.4 Processing Face Images

Measuring ‘attractiveness’

‘Beauty,” the old adage goes, ‘is in the eye of the beholder’ — meaning that
a face found attractive by one person may not be by others. Nevertheless,
psychologists and others have found some evidence that certain face shapes
and arrangements of features tend to be considered more attractive than
others, and this is supposed to be the case irrespective of gender and
culture. There are two characteristics of attractive faces that are easily
amenable to computer analysis and we shall consider them briefly.

Firstly, the more symmetric a face appears, the more attractive it is
supposed to be. The difficulty here is identifying the axis of symmetry (b) Superimposed mask
of a face, and one approach is to identify the locations of the eyes, nose
and mouth and place the axis of symmetry mid-way between them. The
degree of symmetry can be estimated by reflecting one half of the face and
correlating it with the other half — though illumination needs to be fairly
frontal for this to work.

Secondly, humans apparently find that things arranged according to the
so-called golden ratio, ¢, are pleasing. For a > b > 0, this is
a+b a

2 3 (8.3)

In other words, two quantities are in the golden ratio if their ratio is the

¢ =

same as the ratio of their sum to the larger of the two quantities. A bit of
algebra will let you determine that

1 5
¢ = +T1/_ = 1.6180339887--- (8.4) (c) “More beautiful” version according to

the golden ratio

(It is thought to be an irrational number.) Faces whose overall shape are Figure 8.8: Face dimensions that accord

in the ratio ¢ : 1 are supposed to be the most attractive — see Figure 8.8 to the golden ratio are supposed to
be more attractive (from http://www.

and Figure 8.9 for examples. The same idea is supposed to apply for the
goldennumber.net/beauty/)

positions of features within the face: for example, if the eyes are placed
at the golden ratio position within the height of the face, it is supposed

http://www.goldennumber.net/beauty/
http://www.goldennumber.net/beauty/

to be the most attractive position. There are various software offerings
that perform this ‘assessment’ on the Internet; Figure 8.8 is taken from the
website of one of them, while Figure 8.9 is taken from a newspaper article
found by the author.

Clearly, these measures should be regarded only as an amusement. If
your own face or the face of a loved one is neither particularly symmetrical
nor has their features arranged according to the golden ratio, don’t despair:
Sophia Loren is reputed to be one of the most beautiful women ever born
and her face apparently scores poorly according to these criteria. In any
case, remember that there is another old adage that ‘beauty is more than
skin deep.’

Model-based video coding

We have seen how it is possible to locate faces and facial features in images.
With this capability, we can follow the motion of facial features from frame
to frame of a video sequence and infer what the motion of a speaker’s
head is: for example, if both eyes are moving horizontally, the head must
be rotating and, as the diameter of the head can be estimated from the
imagery, we can work out what the angle of rotation must be.

With this information, Miinevver Kokiier and the author were able to
do video-telephony at extremely low data rates without having to attach
markers to the face, as is usual in the movie and games industries. Rather
than sending the actual video, we sent only the rotation angles etc. that
the head is undergoing and then animated a 3D head model at the receiver
— in our work, we used the Candide model discussed in Chapter 9. The
appearance of the 3D model can be improved by texture-mapping the
subject’s face onto it. Although this may seem a little bizarre, we were
able to produce a system in the early 1990s that was accurate enough for
deaf people to lip-read the animated model!

8.5 Recognising Faces: Eigenfaces

You will recall that the standard deviation (or its square, the variance)
gives us a single number that describes the variation present in an image.
It would be useful if we could find a similarly straightforward formula
that encapsulates the similarity between two images in a single number.
An inspection of the equation defining the variance suggests something.
Given two images, P(x, y) and Q(x, y), let us calculate

Cov(P,Q) = == > (P(x,3) ~ (P)) (Q(x,y) (@) (8.5)
Xy

where (-) represents the mean value. If P(x,y) > (P) and Q(x,y) > (Q),
we will get a positive contribution to Cov(P,Q); likewise, we will get a
positive contribution to Cov(P,Q) when P(x,y) < (P) and Q(x,y) < (Q).
Conversely, when P(x, y)—(P) and Q(x, y) —(Q) have opposite signs, we
will get a negative contribution to Cov(P,Q). So Cov(P,Q) is actually a
fairly good measure of how well P and Q vary ‘in step’ with each other.
Because of this and how similar it is to the variance, Cov(P, Q) is known as

LOOKING AT HUMANS 99

Gorgeous George, officially
world’s most handsome man

...and it's proved by a mathematical formula from Ancient Greece

Figure 8.9: Newspaper article from 2017
on beauty and the golden ratio

(a) Original image

(b) Coded image
Figure 8.10: Model-based image coding.
By analysing the motion of a human head
in 2D over the frames of a video, it is
possible to infer the motion in 3D from
(a) and use that to animate a 3D model,
as shown in (b).

100 COMPUTER VISION

the covariance of P and Q. It is easy to show that if P and Q are uncorrelated
or independent, then Cov(P,Q) ~ 0.

Covariance is useful if we have two images but what if we have more
than two? The normal approach is to form a matrix of covariances; if we
have N images P;, P, ... Py, the covariance matrix C is

COV(P],Pl) COV(Pl,P2> cee COV(Pl,PN)
COV(Pz,Pl) COV(Pz,P2> COV(Pz,PN)

) .)) (8.6)
Cov(Py,P;) Cov(Py,P;) --- Cov(Py,Py)

In other words, each element represents the covariance between a pair
of images. Diagonal elements, Cov(P;, P;), are of course simply variances.
A few moments’ thought will tell you that all elements of the covariance
matrix are non-negative and that the matrix is symmetric, as Cov(P;, j) =
Cov(P;, P;).

For any set of images that are related in some way, for example different
images of the same scene or a set of images of people’s faces, off-diagonal
elements will be non-zero if there is some similarity between images, which
is usually the case. If we can transform the covariance matrix to remove this
correlation (i.e., make the off-diagonal elements zero), we can ‘concentrate’
the variation in a set of images into just a few images. ..and this leads us
to the concept of principal component analysis (PCA), a powerful analysis
technique for sets of related images. The technique is also known as the
Hotelling transform and the Karhiinen-Loeve transform; the latter name is
often used in, for example remote sensing.

The mathematics of PCA analysis is fairly abstract but the physical
interpretation is easy to understand (Figure 8.11). If we have a cloud of
points, each representing a single face, in an N-dimensional space, what
PCA does is as follows. Firstly, it identifies the direction of maximum
variation and this becomes the first principal component. The second
principal component must be perpendicular to the first one; in Figure 8.11
this forces to lie in the direction shown but in three dimensions it could be
anywhere on a circle perpendicular to the first principal component. The
particular direction is again chosen to maximize the variance. The same
approach is used for the remaining components.

It is normally found that the first few principal components are much
larger than the remainder. As these correspond to the variances (i.e., im-
portances of signals) of the various principal components, they show how
the most common variation has been compressed into the first few of them,
while the remainder contain smaller variations — the detail.

So why is PCA useful? Given an arbitrary image R(x, y) which was part
of the set of images used to determine the PCA, we can represent R as a
weighted combination of the various principal component images:

R(x,y)=rYi(x,y) + 1Y (x,y) + -+ 1,V (x,¥) 8.7)

In other words, rq, 1, ... ry is a unique feature vector for the image R(x, y)
in terms of the principal components. For an image R’(x, y) which was
not part of the set of images that underwent PCA decomposition, the

Figure 8.11: Illustration of principal
component analysis

above relationship is usually approximately true...and this means it is
possible to represent any image in terms of its feature vector. This is a
significant finding, as it suggests that different images of the same face
will end up in a small region of feature space — so we can apply any of
the machine learning techniques of Chapter 10 to identify groups in PCA
space corresponding to (say) a person’s face.

A caveat is in order here, however. If an image is found which is signific-
antly different to those that formed the set that underwent decomposition,
it will not be represented well as a linear combination of the principal
components. Put another way, PCA is good at interpolating between the
various principal components but less good at extrapolating. Hence, it is
important that the set of images used to obtain the principal components
exhibits all of the possible modes of variation that are able to occur in
practice.

There are several things that need to be done for this approach to work
well. The first is that one needs to pre-process all the images so that images
to be transformed are the same size with the eyes and mouth appearing at
the same pixel locations — this is the face normalization process that was
alluded to in the introduction to this chapter. If this is not done, the most
significant principal component images encode this misalignment rather
than any variation that is useful for face recognition (e.g., nose shape).

To illustrate this, consider Figure 8.12 (taken from the Scholarpedia
article on eigenfaces), which is a PCA decomposition of a well-known face
database. The leftmost in the first row is the mean face, while the other
two images on the top row are the top two eigenfaces; the second row
shows eigenfaces with the three smallest eigenvalues. It is apparent that
although the eyes have been aligned well (they do not appear blurred in
the mean face), there is still significant variation around the eye region in
the least significant principal components. The first principal component
appears to encode the variation between asian and european face shapes;
however, if this is the case, it is purely a consequence of the faces that
form the database.

You might be pleased to learn that the eigenfaces approach has been
implemented in OpenCV, and a web search will quickly turn up the doc-
umentation and example programs. There are also implementations of
related techniques, for example the use of linear discriminant analysis to
yield so-called “Fisherfaces” rather than eigenfaces — Fisherfaces is almost
always better at recognition than eigenfaces. There are theoretical and
practical advantages to some of these alternative techniques but exploring
them would regrettably take us beyond the scope of this lecture course.

Expression recognition and affective computing

Having obtained some idea of how eigenfaces works, it is interesting to
consider some other applications of the approach. There are many, as PCA
is a general technique which is used in many subject domains; in vision,
one of the more interesting is expression recognition.

We all know when a person is smiling — in fact, human examination of
a smile is usually good enough to ascertain whether or not it is genuine, a

LOOKING AT HUMANS 101

Figure 8.12: Some eigenfaces. Top left

is the mean face image, and the other
two images on the top row are the first
two principal components (“eigenfaces”).
The bottom row shows the three smallest
principal components: these supposedly
contain the least amount of information.
[Scholarpedia]

102 COMPUTER VISION

subtlety well beyond computer vision. If software were able to identify
when a computer user is happy by recognising their smile, then in principle
one could make software adapt to this, and similarly with other emotions.
This idea of having software adapt to the emotional state of its user is
known as affective computing [Picard, 2000]. Of course, there are other
ways that emotion can be measured: skin conductivity (as in a lie detector),
alpha and other signals in brain—-computer interfaces, jauntiness of walking
as measured by accelerometers, and so on.

Sadness Sutprise

iness

SES2=,

77

T4 g N
bt Ak %xﬁ.ﬁf
4 A W

Most expression work focusses on the so-called ‘universal’ emotions,
illustrated in Figure 8.13 — though there is not universal agreement on
them, several researchers adding ‘contempt’ to those shown in the figure.

Expression recognition works in essentially the same way as face re-
cognition: a training set of images of each expression is captured and its
principal components found. An image whose expression is to be determ-
ined is processed by the same PCA kernel and its best match identifies the
expression class to which it belongs.

Some reasonably impressive results have been reported in the literature,
though this author treats them with some caution because the datasets he
has examined seem to have ludicrously exaggerated expressions. Perhaps
no-one he has seen has been quite as surprised as the people pictured in the
datasets, who presumably have just been told that expression recognition
works. .. However, please do take a look at the online resources and decide
for yourself.

As a footnote to this brief foray into affective computing, it is worth
noting that the vast majority of published work is expended towards
recognising emotional state; there seems to be little, if any, work towards
adapting interactions based on knowledge of the perceived state — a good
topic for a PhD, perhaps?

8.6 HOG, the histogram of oriented gradients

Having concentrated on the human face for the majority of this chapter, let
us conclude it by looking at techniques that has been applied to tracking
humans as they move. The first of these is the histogram of oriented
gradients or HOG. This is a descriptor of local regions of an image which
works by counting the occurrences of gradient orientation in each region
[Dalal and Triggs, 2005]. The underlying idea is that appearance and

Figure 8.13: The six ‘universal’ expres-
sions (from http://www.eecs.gmul.ac.
uk/~ioannisp/ralis.htm)

http://www.eecs.qmul.ac.uk/~ioannisp/ralis.htm
http://www.eecs.qmul.ac.uk/~ioannisp/ralis.htm
http://www.eecs.qmul.ac.uk/~ioannisp/ralis.htm

shape within an image can be described by the distribution of intensity
gradients or edge directions. A nice property of the HOG descriptor is that
it is largely invariant to geometric and grey-scale changes, though not to
changes in orientation.

To calculate HOG, the image is partitioned into a set of connected
regions called cells (Figure 8.14) and, for each cell, a histogram of gradient
directions is computed. This is done using the masks

0 0 O 0 -1 0
-1 0 1 0 0
0 0 O 0 1 O

The outputs from the masks are used to calculate edge direction just as for
the Canny edge detector, and the resulting angle (in the range 0-180°)
is used to increment one of about 10 bins, usually by the corresponding
gradient magnitude (Figure 8.15).

To accommodate changes in illumination and contrast, the gradient
strengths are locally normalised, and this involves grouping several cells
into a ‘block;’ blocks typically overlap. The HOG descriptor is formed by
concatenating the normalised cell histograms from all the blocks.

HOG was designed to detect human movement, and has proven to be
particularly useful for detecting pedestrians and people running.

8.7 OpenPose and friends

Our discussion of HOG suggests that detecting human pose and tracking
the motion of limbs is a difficult thing to do — which indeed it is. If you
had asked me in the early 2000s about doing a PhD on tracking human
motion, I would have told you that it needs stereo cameras (Chapter 9) or
special hardware such as the depth camera on a Microsoft Kinect. If you
had said you wanted to do it from a single camera, I would have laughed
and said something like “not in my lifetime.” How wrong I was!

The game changed with CMU’s OpenPose in 2017 [Cao et al., 2019].
This provides marker-less, real-time (given enough GPUs) tracking of
human pose from a potentially moving camera; see Figure 8.16. Not only
can it identify the poses of many individuals, it is able to do so at a range
of sizes, something that also came as a surprise. Almost inevitably, the
pose recognition in OpenPose is based around a deep neural network —
though, to be honest, the real innovation was probably not in the machine
learning part itself but in the way the research team captured the huge
amount of data needed for training. Figure 8.16 is a still from a video
which you are strongly encouraged to watch.

As its name suggests, OpenPose is open-source and freely available
from GitHub. It is built on top of Caffe (there is a port to TensorFlow) and
so needs a machine equipped with a graphics card having a reasonable
number of GPUs. Many gamers will have beefy enough graphics cards
to be able to run OpenPose; the author can certainly use it on a fast Dell
laptop in something close to real time.

OpenPose returns a class instance for each detected skeleton which gives
its estimates of the locations of the joints within a frame. The underlying

LOOKING AT HUMANS 103

e
r
A
i
I
"

J|
|
I

Figure 8.14: Histogram of oriented
gradients (HOG) cells (image from Satya
Mallick’s website)

- f e m k& o=

R & w w e

s 4 -
.

Figure 8.15: Histogram of oriented
gradients (HOG) gradients (image from
Satya Mallick’s website)

https://www.learnopencv.com/histogram-of-oriented-gradients/
https://www.learnopencv.com/histogram-of-oriented-gradients/
https://www.learnopencv.com/histogram-of-oriented-gradients/
https://www.youtube.com/watch?v=pW6nZXeWlGM

104 COMPUTER VISION

library is written in C++ and interfaces to OpenCV but there are Python
wrappers to make our lives easier, just as with OpenCV itself. Calculating
joint angles from the joint locations is easy, and it is usually possible to
infer 3D pose by tracking 2D motions over a few frames. Skeletons are
numbered from the top-left corner of a frame. This can cause difficulties
because people’s motions might mean that they have inconsistent skeleton

identifiers from frame to frame.

You should be aware that building software on top of the capabilities of
TensorFlow is very much trying to hit a moving target. A project running
in the 2022-23 academic year looked at porting OpenPose to the most
recent TensorFlow and struggled to get it working outside Google’s Colab
environment, so be warned. Thankfully, alternatives exist and the one
built on top of MediaPipe seems to be the most reliable one at the time of
writing.

Figure 8.16: Tracking human motion
with OpenPose

https://www.youtube.com/watch?v=pW6nZXeWlGM

9
Vision in a 3D World

With images from two carefully-aligned cameras, it is possible to calculate the
distance to objects with some easily-derived mathematics. With images from
many cameras and some more sophisticated mathematics, one can reconstruct
3D objects in the scene or navigate through a 3D world. We first consider how
images are formed in a single camera and, building on that, find that it is
possible to calculate the distance of objects using a simple analytic expression
under certain constraints. This is illustrated on computer-generated imagery of
a 3D model. Following on from that, the principles of the techniques known as
visual structure from motion and visual SLAM are considered.

9.1 Introduction

We know that images from multiple cameras can in principle be processed
to determine the locations of objects in 3D space because that is what
the human visual system does. This is actually a difficult problem com-
putationally as it involves using 2D information (images) to determine
things in 3D; indeed, without ancillary information, the problem cannot be
solved. This ‘additional information’ is the locations and orientations of the
cameras that capture the images, and this is often obtained by some kind
of calibration: imaging objects of known size and shape and calculating
what the cameras’ geometry must be for them to appear where they do.
Humans, of course, do not do this but instead learn to judge distances
implicitly while they are babies and infants, which is why it seems so easy
to us. However, about 10% of humans cannot see in stereo for some reason
or other and they learn to judge distances using other cues.

The process of calculating positions from images captured by two cam-
eras is usually known as computational stereo. The principles can also
be applied to larger numbers of cameras (“multi-camera stereo”) or to
moving cameras, leading us techniques such as visual structure from motion
and visual SLAM: the former attempts to construct 3D objects with some
detail while the latter allows a robot to navigate through the world or for
real-time augmented reality.

The underlying principle of computational stereo is fairly easy to demon-
strate. Close your right eye and point at an object like a doorknob or the
corner of a window. Then, without moving your hand, close your left eye
and open your right one. The place you are pointing at will no longer be
the feature you originally chose, and this is simply because your left and
right eyes are in different places. This discrepancy in position is known as

106 COMPUTER VISION

parallax in physics and as disparity in computer vision.

back focal plane aperture

9.2 The geometry of imaging

Before we can proceed, we need some idea of how a camera works in
geometrical terms. The simplest camera is a ‘pin-hole’ one (Figure 9.1) —
many children make them by taking a box, cutting out a large square hole
at one end and sticking tracing paper over it, then putting a small hole in
the other end. If one goes into a darkened room and points the camera
through a gap in the curtains, it is just about possible to distinguish an
(upside down) image on the tracing paper.

It is easy to see that the triangles 0ZX and Ozx in Figure 9.1 are similar,

SO

X X x X
tan— =tan— > — = —.
Z Z Z

The reason that people rarely use pin-hole cameras in practice is that the
aperture is so small, and hence the amount of light admitted is minuscule.
If the tracing paper screen is replaced by photographic film or a modern
imaging sensor, exposure times can be several minutes rather than the
fractions of a second achieved with conventional cameras. The author
does this with a SLR camera, replacing its lens with a body dust cap with
a pin-hole in it.

So how does a real camera differ from a pin-hole camera? In terms of
imaging geometry, the principal difference is that the pin-hole is replaced
by a lens, whose sole purpose is to focus light impinging on the larger
aperture onto the back focal plane, the place where the tracing paper is
stuck on a simple pin-hole camera (Figure 9.2). The ability to capture much
more light via the lens means that exposure times are greatly reduced.
The way that lenses form images means that when Z = oo, gz = f, the
focal length of the lens. We shall generally assume in the following that
Z ~ 09, i.e., that z = f. This is quite reasonable in practice.

For those readers who are photographers, a perfect pin-hole camera has
an infinite depth of field (i.e., objects at all distances from the camera are in
focus); it is the finite diameter of the aperture that makes the depth of field
finite in real cameras. If you think about this, it is entirely consistent with

Figure 9.1: Imaging geometry of a
pin-hole camera

back focal plane

lens

the photographers’ ‘rule’ that the depth of field increases as the diameter
of the aperture decreases (or the f-number increases).

optical axis of left camera

left image

5, 2)

I
| right imace

bazeline dizplacemert b

(a) Stereo configuration

Z=0

(b) Plan view

9.3 Computational stereo

The maths involved in the images from multiple cameras to calculate the
3D locations of markers is a little tricky but we can see the general way

optical axis of right camera

(X, Y, Z)

VISION IN A 3D WORLD 107

Figure 9.2: Imaging geometry of a real
camera

Figure 9.3: The geometry of computa-
tional stereo

108 COMPUTER VISION

in which it is done by considering just a pair of cameras (Figure 9.3). To
make the maths easier, we shall make some simplifying assumptions:

* two pinhole cameras are used, with identical focal lengths;
* the two cameras have parallel optical axes;

* the two cameras are aligned so that disparities always lie in the same
row of the images.

Much of the ‘trickiness’ in the maths alluded to above is in circumventing
these constraints.

Let us put the origin of our coordinate system at the front of the lens of
the right camera. A point (X,Y,Z) on an object in the scene is projected
onto image point (x;,y) in the left image and onto point (xg,y) in the
right image. From similar triangles in the left camera in the plan view of
Figure 9.3, we have

x; B-X
_— = — .1
G 7 (9.1)
and in the right image
XRp X
_R_Z 2
oz (9.2)

Formally, we should proceed by re-arranging (9.1) and (9.2) to make X the
subject, then equate them and perform some manipulation of the result.
However, a more direct approach is simply to add them:

X1 —XR B—X+X B
= =—= 9.3
7 Z 7 (9.3)

where the minus sign is due to the different direction of the angle. This
can be re-arranged to give the depth (distance from the camera), Z, in
terms of the disparity measured between the two images, x; — xg:

N L (9.4)
XL —XR

A little care is needed with these quantities. The image coordinates
(x1,y) and (xg, y) in above equations have their origin at the centre of the
images with their axes running in the same directions as the 3D coordinate
system. However, we typically place the origin of an image at its upper-left
corner with the x and y axes left-to-right and top-to-bottom respectively.
This means that positions in images have to be transformed to conform
with the 3D coordinate system before using them in calculations. The

image coordinate transformation is

x” = image x location — half the image size in x (9.5)

y’ = half of the image size in y —image y location (9.6)

If the image size is odd in x or y, a fractional value results. Furthermore,
one needs to be able to convert the disparity from pixels to the same
units as the focal length. That can in principle be done by consulting
the manufacturer’s data sheet; but in practice, it is better to find this
quantity by calibration. The same calibration process can identify (some)
aberrations in the lenses used too, making the overall result more accurate.
There are both camera calibration and computational stereo routines in
OpenCV, the latter more general than the approach described here.

9.4 Computational stereo in action

A good way to prove that this kind of computational stereo works is with
simulated data for which the answer is known — and a very convenient
way to simulate images of 3D objects is by computer graphics. Using
POV-ray, a ray-tracing program that accepts a description of a scene in
something resembling a programming language and generates realistic-
looking, geometrically-accurate 2D images of it, it is relatively easy to
define the imaging geometry of objects and cameras and hence generate
stereo pairs for use in computational stereo.

(a) Left image (b) Right image

A stereo pair of a simple head model known as Candide is shown in
Figure 9.4. With a little effort, it is possible for most people to look at this
pair of images and see the object in 3D. The trick is to get your eyes to
look straight ahead rather than trying to focus on each image separately;
and the easiest way to do that is to hold the page close to your face and
stare at the stereo pair, then slowly move the page away from your face.
You should find that a third image which shows depth appears between
the two real ones. (However, recall that about 10% of people are not able
to see stereo at all; you might be one of the unlucky ones if you can’t make
this work, or you might just need to practise.)

The stereo pair was generated using the following pair of POV-ray
camera definitions:

// Left camera // Right camera
camera { camera {
location <75, 300, 800> location <-75, 300, 800>
look_at <75, 300, 280> look_at <-75, 300, 280>
} }

i.e., with a baseline B = 150 mm. (All measurements on the model are
in millimetres, so the camera definitions etc. are too.) By calibration
for 640 x 480-pixel images, it is found that these POV-ray cameras have
f = 477.35mm. Hence, from (9.4) we can calculate the distance to a
point on the head as

150 x477.35 71602.5
= = mm
X[—XR XL —XR

Z

Using an image display program, we can find the locations of (say) the
end of the nose or the corner of an eye in the left and right images, then
use them to calculate Z. We can then compare the calculated Z with its
true value in the Candide model.

VISION IN A 3D WORLD 109

Figure 9.4: Stereo pair of the Candide 3D
head model

http://www.povray.og/
http://www.icg.isy.liu.se/candide/main.html
http://www.povray.org

110 COMPUTER VISION

If we choose vertex number 5, the tip of the nose, the calculations
proceed as follows. Its x positions in the left and right images are 389 and
252 respectively. Transforming them according to (9.5) gives x; = 69 and
xr = —68. This gives us

_71602.5

= —— =522.6
5~ 69+ 68 mm

The true value of Zs is 520 mm — reasonably close.

Even though all this experiment is performed on a computer — the
images are calculated from specific numbers according to well-understood
equations, and practical problems such as mis-alignment of the optical
axes of the camera do not arise — the results from the computational
stereo calculation are not identical to their true values. This is not due
to bugs in the software, and you might like to reflect on possible causes
before reading the next paragraph.

So why are the results not accurate? There are two main reasons. First,
the camera used by POV-ray must be calibrated in some way, just like a
real camera, and this introduces inaccuracy. Secondly, the feature matches
in left and right images are accurate to the nearest pixel, as illustrated in
Figure 9.5: the actual position of the sharp point of the polygon can be
measured only as being within the pixel at (x,y) = (1,3) even though
we can see it is not right in the middle of it in this expanded view. It is
important to realize that taking measurements is never perfectly accurate,
even when everything is done on a computer.

9.5 Propagating uncertainty

You might be surprised to learn that if we know how uncertain some things
are, we can carry that uncertainty forward through calculations and, on
some occasions, even reduce it — that is why roboticists and control en-
gineers use a Kalman filter to combine measurements. We should actually
write that the position of a feature in the left or right image is something
like x; = (69 £ 1) pixels: in other words, we quote the actual measure-
ment and its associated uncertainty. Why £1? It is because we cannot
measure the position of a feature in an image, such as the tip of Candide’s
nose, to less than a pixel. The jargon word for this uncertainty is exper-
imental error or just error, though you should not take this word in the
sense of it being a mistake.

Let us go back to the calculation of Z5 above. Rather than having
everything known perfectly accurately, let us ascribe uncertainties to each
of the quantities: B = (150+£0.1) mm, f = (477.35+£1.2) mm, x; =
(69 + 1) pixels as above and xzp = (—68 £ 1) pixels. The uncertainties
in B and f are fictional here but can be found by measurement in real
experiments. We can work out the uncertainty in Z5 by applying two rules:

* when adding or subtracting values, add the errors;
* when multiplying or dividing values, add the fractional errors.

For mathematically-inclined readers, these are consequences of Taylor’s
theorem, i.e. they involve the derivative of the equation for combining the

Figure 9.5: Locations are accurate only to
the nearest pixel

quantities. The fractional error in (Q + 6Q) is %Q, pretty much what you
would expect from its name. Because this calculation is based around a
simulation, we have ignored an important practical point, the conversion
of the disparity in pixels to a real unit of length, say millimetres in this case.
Let’s say the sensor was 1 cm (10 mm) square; then each of the 640 pixels

would occupy

E =0.015625mm
640

and we would write xz = (1.078125+0.015625) mm and x; = (—1.06250=+
0.015625) mm.

To find the error in Zs, we have to add up the fractional errors in B, f
and the disparity

6Zs 0.1 1.2 0.003125

Zs 150 477.35 + 2.140625

which works out to give §Z5 ~ 1.7 mm, so we would write its value as
being (520.0 %+ 2.5) mm.

As an aside, if you ever see a graph with little I-shapes drawn at each
point, these are indicating the sizes of the uncertainties of the values drawn
— as a physics student, handling uncertainties was pretty much the first
thing I was taught in my degree.

9.6 3D coordinate geometry

In order to progress further in solving 3D problems using computer vision,
a better grasp of the mathematics underlying the 3D world is needed.
However, the mathematical knowledge is not especially difficult and is the
same as that underlying much of 3D graphics — the author used to teach
it to second-year undergraduates. Let us start by considering the three
basic types of transformation that retain the basic geometry of an image:
translation, scaling and rotation. Other types of 3D transformation are
obtained by combinations of these primitive operations.

Translation

Consider the movement of the point P = (x,y)’ to P’ = (x/,y’)" in
Figure 9.6(a). We have the two equations

x' =x+dx

Yy =y+dy

.y/ y dy

P=P+T

or as

where T represents the translation.

VISION IN A 3D WORLD 111

,,,,,,,,,,,,,,,,,,,,,,, oP
o
- dx ----- - X
(a) Translation of a point
v A
P
P
. -
o

(b) Scaling of a point

(c) Rotation of a point

Figure 9.6: The fundamental 2D trans-
formations

112 COMPUTER VISION

Scaling

If we have x’ = xS, and y’ = ¥S, as in Figure 9.6(b), we have scaled the
point P to P’. Note that the scale factor may be different in x and y: this
would turn a circle into an ellipse, for example. We can write scaling as

()05 5)0)

P’ =SP

or as

where S is the matrix that represents the scaling.
A shear, which distorts a shape along one direction only, is a kind of
scaling. Shears parallel to the x- and y-axes are given by

Lo 3)=l)

From Figure 9.6(c), we have x = rcos¢ and y = rsin¢ and we can see
that

Rotation

x' = rcos(6+¢) = rcosOcosp—rsinbsingd
Yy = rsin(0+¢) rcos 0 sing + rsin 6 cos ¢

Substituting for x and y, we get

x" = xcosO—ysinf

y' = xsinf + y cos O

We can write these in matrix form as
x")\ [cos® —sin® x
y') \sin® cos@ y

P’ =RP

or as

where R is the matrix that represents the rotation.
Transformations such as these have several important properties:

* points on a straight line remain on a straight line after transformation;
* parallel lines remain parallel;
* intersecting lines remain intersecting — we can show this by drawing a

line across the diagonal of a square and then rotating the square.

Combining transformations using homogeneous coordinates

If we have, say, P’ = SP to perform a scaling and P” = RP’ to perform a
rotation, then we can also say

P” = RSP.

In other words, we can introduce an additional scaling or rotation by
pre-multiplying by the relevant transformation matrix. (The order in which
we apply transformation is important, as matrix multiplication is not com-
mutative (M; M, 7= M,M;).) However, we cannot represent translation in
the same way, as it is additive rather than multiplicative. We get around
this by using so-called homogeneous coordinates in which the point (x, y) is
represented by the three numbers (x, y,1). The 2D point is found by divid-
ing all elements by the last one. In other words, (x, y,1) and (hx,hy,h)
represent the same homogeneous coordinate. This allows us to apply
translation in exactly the same way as rotation and scaling, simply by
pre-multiplying:

cos® —sinf O
R=| sinf cos6 O

0 0o 1
Se 0 0
s=| 0 s, ©
0 0 1
10 ¢
T=| 0 1 ¢,
00 1

Knowing these transformation matrices, we can work out where a pixel
will move to if the camera is subject to rotation, scaling and translation —
in other words, we can work out what will happen to an image if we have
a camera mounted on a moving robot, car, person or aircraft. However,
the rotation matrix works only if we rotate around the top-left corner of
the image, which is pretty unlikely to happen in practice, so we need to
stack up some transformations that let us apply it.

Let us assume that the image rotates around the point C = (x,y.) in
the image. If we move that point to the origin and then apply the rotation
matrix from above, we will rotate the image around the centre; and we
then have to translate the resulting image to the right place. In other
words, the combination of rotation, translation and scaling on a pixel
P = (x,y) in the image will be

P = STRT_,P 9.7)

where T_. represents the shifting of C to the origin. Carrying out this
series of multiplications, one ends up with the composite transformation

x' =s(x—x.)cos0—s(y—y.)sin0 + t, (9.8)

y' =s(x—x.)sinb +s(y—y.)cos6 +t, (9.9)

where s represents the scale factor, 6 the angle of rotation and (t,, t,) the
translations.

What this tells us is that, knowing the values of these transformations,
one can calculate where each pixel in the image will end up. However, it
is normally the converse of this that one is interested in: knowing where
some pixels in one image end up in another, how does one work out the
transformations between them?

VISION IN A 3D WORLD 113

114 COMPUTER VISION

9.7 Correcting perspective effects

We shall consider only a special case, the stage in the Sudoku capture
program discussed by Chris Greening in Chapter 1, where he straightens
the grid. In fact, the solution to this problem turns out to be useful in many
other places: the author uses it for removing ‘converging verticals’ from
his photographs and for preparing photographs of buildings for texture-
mapping in computer graphics. This latter process is shown in Figure 9.7,
which shows foreshortening with distance due to perspective; our aim is to
make the four marked points become the corners of a straightened image,
a process often called ‘rectification.” The technique was first reported in
[Criminisi et al., 1997] and expounded in full in [Hartley and Zisserman,
2003], the standard work on multi-view geometry in computer vision.

Let the coordinates of a marked point in the photograph be (x,y) and
the location we want to map it onto in the straightened image (x’, y’). We
can write the transformation in homogeneous coordinates as

x’ hi1 hip his X
y’ = ha1 hyy has Y
k hz; hsy hss 1

where the last entry in (x’,y’, k)7 is because the values of H; ; might not
be normalized. Converting this to inhomogeneous coordinates involves
calculating

X_/ _ hyyx+hypy +hiz
k h31x+hgyy +hg3’

Y haix +hgy +hys

— 9.10
k hgix+hsy +hss ©10)

which are essentially the equations given in the introductory lecture.
Simply re-ordering these equations as

(9.11)
(9.12)

hi1x +hysy +hiz = x’ (h31x +hzy + h33>
ho1X + hooy + hag = ¥’ (h31x + hapy + has3)

shows that they are linear in h;;. This pair of equations is for one matched
point, so the four matched points in Figure 9.7 give us 8 such equations and
this is enough to solve for h;; up to a multiplicative scaling factor, providing
no three points chosen lie in a straight line — if they do, solving the
equations ends up dividing by zero. Writing code to solve these equations
leads to a fairly compact routine to calculate the transformation.

(Undoing perspective effects) =

1 def find_perspective_transform (src, dst):

2 """This routine calculates the coefficients of the
3 perspective transformation which maps (xi,yi) to

4 (ui,vi), (i=1,2,3,4)."

n = len (pos)
6 if n !=4: raise Exception ("Wrong number of matches.")
7 a = numpy.zeros ((8,8), dtype=numpy.float32)
8 b = numpy.zeros ((8), dtype=numpy.float32)
9 m = numpy.zeros ((3,3), dtype=numpy.float32)

11 for i in range (0, 4):
12 ali,0] = a[i+4,3] = src[i,0]

(a) A photograph showing the normal
foreshortening due to distance, with four
points marked on features that lie on the
side of the building

... L

(b) The region between the four points,
extracted in a way that removes the per-
spective distortion

(c) An image of a 3D model with the
undistorted image texture-mapped onto
one face

Figure 9.7: An image showing perspect-
ive distortion and a region of it, ‘rectified’
to remove the perspective effect. These
rectified images have a variety of uses,
such as texture-mapping in computer
graphics.

VISION IN A 3D WORLD 115

13 ali,1] = a[i+4,4] = src[i,1]

14 ali,?2] = al[i+4,5] 1

15 ali,3] = ali,4] = a[i,5] = a[i+4,0] = a[i+4,1] = a[i+4,2] = 0
16 ali,6] = -src[i,0] * dst[1i,0]

17 ali,7] = -src[i,1] * dst[i,0]

18 ali+4,6] = -src[i,0] * dst[i, 1]
19 ali+4,7] = -src[i,1] * dst[i,1]
20 b[i] = dst[i,0]

21 bl[i+4] = dst[i,1]
22 # Solve the set of equations and copy the solution into a transformation
23 # matrix, which we return.
2% X = numpy.linalg.solve (a, b)
25 m[0,0] = x[0]
2% m[1,0] = x[3]
2 m[2,0] = x[6]
28 m[O,1] = x[1]
29 m[1,1] = x[4]
30 m[2,1] = x[7]
31 m[0,2] = x[2]
32 m[1,2] = x[5]
m[2,2] = 1.0
34 return m

This would be used in a program such as the following one.
(Finding the perspective transform) =

1 #!/usr/bin/env python

> '''Image rectification using OpenCV.'"'
from __future__ import division

4+ import sys, numpy, cv2

o # Define the image containing the region to extract and the boundaries
7 # of the region.
s pos = numpy.zeros ((4,2), dtype=numpy.float32)

o fn = "psychology.jpg"

0 pos[0,:]1 = [249, 337] # ULx, ULy
11 pos[l,:] = [238, 483] # LLx, LLy
12 pos[2,:] = [548, 5011 # LRx, LRy
13 pos[3,:] = [557, 190] # URx, URy

s # Define the size of the output image and the region of it we want to fill.

6 n =m= 512

17 0poS = numpy.zeros ((4,2), dtype=numpy.float32)
s opos[0,:] = [0, 0]

19 opos[l,:] = [0, n-1]

20 opos[2,:]1 = [m-1, n-1]

21 opos[3,:]1 = [m-1, 0]

23 # Work out the transformation from the match-points.
22 xform = find_perspective_transform (pos, opos)

26 # Invoke OpenCV routines to extract the region.
27 im = cv2.imread (fn)

28 warp = cv2.warpPerspective (im, xform, (m, n))
20 cv2.imwrite ("rectified.jpg", warp)

0 cv2.waitKey ()

One important feature of this technique is that it does not involve any

116 COMPUTER VISION

knowledge of the camera, whereas the most general techniques involve
either calibrating the camera first or recording ancillary data about focal
length or sensor size with the photographs. Of course, it does require
knowledge that the four match-points are coplanar, and only a human is
really able to determine that.

9.8 Visual structure from motion

How far can one extend this general approach? If one takes a few hundred
images, then one can calculate the SIFT or other features of each image
and match them up between images. These matches allow one to build up
a set of equations that can be solved to yield the 3D positions that must
have generated the images — see Figure 9.8.

-
--@---®
5

3D-Model®, " .

corresponding
feature points

The solution can take hours or even days, depending on the number of
features and images, but one ends up with a cloud of individual coloured
points that can be manipulated to show the scene in 3D. If the focal length
of the camera is known for each image (which is usually recorded in
the EXIF header of a JPEG image), then it is possible to scale the 3D
reconstruction to match real-world features. This technique is known as
visual structure from motion (VSFM). There have been open-source VSFM
tools around for a few years now. The leading commercial product is
currently Agisoft’s Photoscan Pro. There are also very impressive free tools
such as AliceVision’s Meshroom, which we have used to construct and
3D-print a version of the University’s Mace.

Here at Essex, we use these 3D reconstructions as part of our research.
Views of a model of Square 2 produced in this way are shown in Figure 9.9,
while a local church is shown in Figure 9.10. We are active in reconstructing
coral reefs using VSFM and a reconstruction of about 100 x 50 m is shown
in Figure 9.11.

Figure 9.8: The principle of 3D recon-
struction by structure from motion

https://www.researchgate.net/publication/303824023_Exploring_the_use_of_ 3D_GIS_as_an_analytical_tool_in_archaeological_excavation_practice
http://alicevision.github.io

VISION IN A 3D WORLD 117

Figure 9.9: Views of a reconstruction of
Square 2 using a structure from motion
technique

2 I
!'zaéi ﬂ'ai%?ﬁ

—
L)

i

Figure 9.10: A reconstruction of
Elmstead’s church

118 COMPUTER VISION

Figure 9.11: A coral reef reconstruction

9.9 Visual SLAM

When we combine the pose estimation techniques outlined above with a
temporal filter such as a Kalman filter, we end up with a camera-based
version of simultaneous location and mapping (SLAM). SLAM was originally
devised in robotics research, and allows a robot to explore an environment,
identifying ‘landmarks’ and navigating by them in a way that makes both
its position relative to those landmarks and the locations of the landmarks
relative to it improve in precision the further it explores. Visual SLAM is
essentially a vision-based version of the original (radar- and sonar-based)
SLAM algorithm.

Visual SLAM has proven to be very effective for real-time augmented
reality in moderately small environments, say a desktop or part of a room.
With careful implementation and a fast graphics processor, it is able to
run in real time. A major challenge currently being explored by vision
researchers is making these techniques scale up so that, say, a car equipped
with a camera can be driven around a town and ‘know’ when it returns to a
place it has seen before. Some experiments to do this have been performed
in Australia (where SLAM originated) and at Oxford but they are currently
non-real-time and the researchers are struggling to make everything work
well enough.

Here at Essex, we have also explored visual SLAM. Figure 9.12 shows
two screen captures from our development system. The 3D view draws
yellow ellipsoids showing the error in 3D of each feature tracked. As the
feature is tracked successfully from frame to frame, these ellipsoids shrink,
showing that the software is more confident of where that feature lies in
3D coordinates. The red line shows the trajectory of the camera.

The camera display to the top right shows what is happening in the video
frames. Predicted feature locations from the extended Kalman filter are
shown with squares. The circles within the squares indicate the covariance
(essentially a measure of uncertainty) of the predicted positions. The exact
predicted position is shown with yellow circles. When a prediction matches
the true location of a feature, it is shown in green; when unsuccessful, it

VISION IN A 3D WORLD 119

(a) Shortly after initialization; note the size of the error ellipsoids

(b) After 700 frames, the error ellipsoids are much smaller
Figure 9.12: Visual SLAM in operation

120 COMPUTER VISION

is shown in red. This version of the software is using normalized cross-
correlation to perform feature matching as SIFT etc. are all too slow to
operate in real time. There are now a couple of Visual SLAM toolkits freely
available: one is from Andy Davison’s group at Imperial College and the
other from the University of Zaragoza in Spain; the latter is based around
matching ORB features and is reported to be very good.

We are currently exploring visual SLAM use for an augmented reality
tour guide of local archaeological sites, in which a person equipped with
a wearable computer and head-mounted display roams around the site,
seeing 3D reconstructions of the buildings from the right orientation all
the time.

10
High-Level Vision with Machine Learning

An introduction to machine learning in computer vision is provided. We start
by discussing the important distinction into supervised and unsupervised ap-
proaches, and emphasise the importance of providing useful information to the
machine learning algorithm to use.

A simple unsupervised technique is presented, and then a series of supervised
schemes of increasing complexity are presented, in most cases covering the
underlying principles and how they can be used in practice. Indicative perform-
ances are presented on some typical datasets.

10.1 Introduction

To conclude our exploration of computer vision, we shall consider the
role that machine learning (ML) plays in it. Vision researchers were some
of the first to make large-scale use of ML, and different techniques have
been ‘hot topics’ at various times in recent years. In the early 2000s, the
support vector machine (SVM) was the technique of choice; but recent
years have seen the rise of ‘deep learning’ (neural networks with many
hidden layers, which we shall consider in Chapter 11) in general and the
convolutional neural network (CNN) in particular. The CNN is currently
the most effective ML technique on many problems in computer vision, so
much so that it seems that every other vision paper is concerned with its
application. This furore will eventually dissipate and some more sensible
science will hopefully ensue.

There are many ML techniques, and they fall into two broad categories:

Unsupervised. Given a set of unlabelled data, these techniques try to infer
a way of partitioning them into classes with no knowledge of the data
or underlying problem.

Supervised. These techniques ‘learn’ how a set of data is partitioned into
classes from training examples.

As training data for supervised learning include the ‘ground truth’ labels
for the problem, they generally produce solutions that are better able
to classify unseen data. The majority of ML techniques that are widely
known are supervised ones. Unsupervised techniques are more useful in
exploratory data analysis, when the properties of the data or problem are
not yet known.

122 COMPUTER VISION

ML algorithms are often not trained directly on images but rather on
numbers extracted from images or image feature — a feature vector, which
we first encountered in Chapter 5.

Although ML techniques can produce amazing results, the way in which
they are trained is critical to their ultimate performance. If a developer
trains any ML algorithm with data that do not encode useful information
for distinguishing class labels, or do so poorly, it will not learn well. As
mentioned in an earlier chapter, this is often stated succinctly as “garbage
in, garbage out.”

The final thing to be aware of is that supervised ML is slow — and as a
rule of thumb, the more sophisticated the ML algorithm, the longer it takes
to train. Given a top-of-the-range, multi-core, PC-class machine, training
times of tens of minutes are achievable for some of the datasets we shall
look at here using techniques such as SVM and multi-layer perceptron
(MLP); for CNN, the equivalent training time is of the order of an hour —
and as the dataset size increases, so does the training time. For this reason,
researchers have expended a fair amount of effort in producing implement-
ations of the most popular ML techniques on GPUs, the high-performance
but dumb processors found on some graphics cards. Highly-optimised
GPU code can run literally hundreds of times faster than conventional
CPU-based code; but the author’s experience using some of the libraries
described here is that the speed-up is much more modest, about 3—10. Your
mileage may vary, of course. Before you become enthused about writing
GPU-based implementations yourself, let me warn you that programming
parallel computers is difficult. Even with GPUs chugging away, training a
convolutional neural network on state of the art image databases can take
literally weeks!

10.2 Unsupervised learning using k-means

k-means is a clustering technique closely related to vector quantization
in signal processing. It partitions N feature vectors into k clusters in
which each feature vector belongs to the cluster with the nearest mean.
A feature vector is considered to be in a particular cluster if it is closer to
that cluster’s centroid (mean) than any other centroid. The problem is
formally computationally difficult (“NP-hard”).

The most popular variant of the algorithm finds the best centroids by
alternating between:

* assigning data points to clusters based on the current centroids; and

* choosing centroids (cluster centres) based on the current assignment of
data points to clusters.

The algorithm has converged when the assignments no longer change. Six
example runs of the algorithm are shown in Figure 10.1. In each case, ten
points are randomly generated in each of six regions equally spaced around
a circle. k-means is run for 100 iterations and the resulting classification
of the points is shown in different colours.

Note that the algorithm has to be told the number of clusters to look for.
Furthermore, there is no guarantee that the global optimum is reached, and

HIGH-LEVEL VISION WITH MACHINE LEARNING

+
% A v
£,
£ 3_' T . e 3 +
+
+
'H"i + + +++
T
5 P ¥ 3
4 +
+
+
B
+ .
5 2
;} + f"::f + +
¢ . N ey
o, 0% +t e

the local optimum found depends on the order in which the feature vectors
are presented. However, it runs so quickly that many researchers execute
it many times and take the best solution. There are implementations of
the algorithm in Scipy and Scikit-learn, as well as in stand-alone packages.

People tend to confuse the technique known as k nearest neighbours
(“k-NN”) with k-means but they are very different. Given a set of known
clusters, k-NN classifies a feature vector into a class based on the class of
the majority of its k nearest neighbours; it is common for k = 1, i.e. to use
the class of a feature vector’s nearest neighbour.

10.3 Simple supervised learning with WISARD

WISARD is a simple pattern recognition scheme, devised in the 1970s by
Wilkie, Stonham and Aleksander; the name stands for Wilkie, Stonham and
Aleksander’s Recognition Device [Aleksander et al., 1984]. It is sometimes
described as a neural network, though many do not regard it as so because
it is weightless and can be trained by a single data presentation. It is
occasionally described as an “associative memory,” which is closer to how
it actually works, and as an “n-tuple” network. However, we don’t need to
get ourselves bogged down in such pedantry here; WISARD does a simple
kind of ML.

The operation of WISARD is illustrated in Figure 10.2. It is intended
to operate on binary images, i.e. ones whose pixels may take only the
values zero and unity. The system consists of a frame buffer, a register or
discriminator element and a 1-bit RAM — the simplicity of the architecture
is because WISARD was designed to be implemented in hardware. In fact,

123

Figure 10.1: Examples of running the
k-means algorithm. Training examples
are shown as pluses and cluster centroids
as crosses. The clusters identified are

shown in different colours.

frame buffer

register

1111

0101

0000

Figure 10.2: Illustration of the operation

of WISARD

http://www.scipy.org/
http://scikit-learn.org/

124 COMPUTER VISION

the original hardware was on display in the Science Museum in 2017, and
Figure 10.3 shows an image of it.

Initially, every element of the RAM is cleared (set to zero). Several pixel
locations, four in Figure 10.2, are chosen at random?! and connected to
the bits of the register. When an image is loaded into the frame buffer,
the values held in those four locations determine the value in the register.
What happens next depends on whether WISARD is being trained or tested
(used for recognition):

* when being trained, the value in the RAM addressed by the register is
set;

* when being tested, the value in the RAM addressed by the register is
compared with unity.

Fairly obviously, when the test pattern is identical to the training pattern,
at least in the selected locations, a match will be found.

Of course, if WISARD used only four samples from an image, it would
not be particularly robust; hence, several other sets of four randomly-
chosen pixels are used in the same way. The number of comparisons from
groups of four pixels that produce a match are added up, resulting in a
“score” that determines how close the overall match is.

An implementation of WISARD is available in one of the associated lab
experiments. Note that a single WISARD network is able to recognize only
one pattern. To be able to distinguish several patterns, it is necessary to
train a network for each of them, then run the test pattern through them
all and ascertain which gives the largest score.

10.4 The MNIST test case

To explore how well WISARD and some of the other techniques described
below work, we shall again use one of the best-known ‘standard’ datasets,
the MNIST database of handwritten digits considered in Chapter 6. There
are some 60,000 training images and 10,000 test images in it, arranged
as shown in Table 10.1; Figure 10.4 shows some typical examples. Each
image is only 28 x 28 pixels in size.

Testing the above implementation of WISARD by hand on 10,000 test
images would be both error-prone and tiresome, so it is best to resort to a
test harness; we shall use HATE, the big brother of the FACT test harness
which you have used in your laboratories.

Results from training and testing on the complete MNIST database are
shown in Table 10.2 (accuracies) and Table 10.3 (class confusion matrix).
You will see that the results are pretty awful because a large proportion
of the matches are ambiguous (more than one network returns the same
score), which causes the ‘reject’ class to be returned. From this we conclude
that WISARD is poor at encoding the appearance of its training data.

Additional evidence for this conclusion can be gleaned by training and
testing WISARD on a subset of the MNIST database. Using only 50 images
of each class for training and about 140 other images for testing, we obtain
the results in Table 10.4 (accuracy) and Table 10.5 (class confusion matrix).

Figure 10.3: WISARD on display in the
Science Museum

! Clearly, these random locations must be
the same during the training and testing
phases discussed below. This is done by
recording the locations used for training
in the file that results from it, and then
examining those locations when testing.

digit train test
0 5923 980
1 6742 1135
2 5958 1032
3 6131 1010
4 5842 982
5 5421 892
6 5918 958
7 6265 1028
8 5851 974
9 5949 1009

total 60000 10000

Table 10.1: Numbers of training and test
examples for each digit in the MNIST
database

o syl lol 71419

SNEENENRNE
N ERENNEON

NINANNENBRE
7] 9 5 Y (T Y (Y N
NOONONEEOS
0 2 Y Y 0 Y Y Y A
GHCRNNNEAR
SN NY
SENEERESE
ololelolofo]s[olofs]

~0

Figure 10.4: Typical images from the
MNIST database

HIGH-LEVEL VISION WITH MACHINE LEARNING 125

tests TP TN FP FN accuracy recall precision specificity class
980 118 0 20 842 0.1204 0.1229 0.8551 0.0000 O
1135 41 0 5 1089 0.0361 0.0363 0.8913 0.0000 1
1032 220 0 47 765 0.2132 0.2234 0.8240 0.0000 2
1010 64 0 39 907 0.0634 0.0659 0.6214 0.0000 3
982 133 0 15 834 0.1354 0.1375 0.8986 0.0000 4
892 79 0 18 795 0.0886 0.0904 0.8144 0.0000 5
958 263 0 16 679 0.2745 0.2792 0.9427 0.0000 6
1028 99 0 19 910 0.0963 0.0981 0.8390 0.0000 7
974 63 0 34 877 0.0647 0.0670 0.6495 0.0000 8
1009 36 0 8 965 0.0357 0.0360 0.8182 0.0000 9
0 0 0 0 0 0.0000 0.0000 0.0000 0.0000 reject
0 0 0 0 0 0.0000 0.0000 0.0000 0.0000 fail
10000 1116 0 221 8663 0.1116 0.1141 0.8347 0.0000 overall
Table 10.2: MNIST WISARD error rates
true class returned by algorithm
class 0 1 2 3 4 5 6 7 8 9 reject fail
0118 O 4 9 1 2 3 0 1 o 842 0
1 1 41 0 © 0 o 1 0 3 0 1089 0
2 4 2 220 21 4 3 31 8 1 765 0
3 5 1 22 64 1 3 o 3 3 1 907 0
4 2 0 3 4 133 2 2 1 1 0 834 0
5 7 0 3 1 2 79 1 1 3 O 795 0
6 2 0 3 1 1 6 263 1 2 O 679 0
7 1 0 6 8 1 0 0 99 0 3 910 0
8 5 1 4 6 6 6 5 0 63 1 877 0
9 0 O 1 1 0o 2 1 2 1 36 965 0
reject 0o o 0O o 0 © O o0 o0 o 0 0
fail 0o o 0O o 0 o0 O o0 o0 o 0 0

Table 10.3: Class confusion matrix for
WISARD on MNIST

These results are significantly better than those from the full database, so
we can conclude that WISARD’s ability to learn has been overwhelmed by
the volume of data in the full MNIST database.

The author’s view is that the underlying approach of WISARD has more
potential than these results suggest: there are similarities between it and
the BRIEF and ORB descriptors, for example, and the number of places
in which the image is sampled is probably too few here. It would be
interesting to get to grips with it properly and see what improvements can
be made.

10.5 Support vector machines

The SVM [Cortes and Vapnik, 1995; Alpaydin, 2014] has been widely used
by the research community for supervised machine learning. Unlike all
of the techniques we shall consider below, the SVM is deterministic rather
than stochastic and so returns exactly the same result every time it is run.

126 COMPUTER VISION

tests TP TN FP FN accuracy recall precision specificity class
139 80 0 9 50 0.5755 0.6154 0.8989 0.0000 O
148 82 0 13 53 0.5541 0.6074 0.8632 0.0000 1
145 102 0 9 34 0.7034 0.7500 0.9189 0.0000 2
1499 77 0 17 55 0.5168 0.5833 0.8191 0.0000 3
136 78 0 15 43 0.5735 0.6446 0.8387 0.0000 4
137 79 0 9 49 0.5766 0.6172 0.8977 0.0000 5
145 97 0 6 42 0.6690 0.6978 0.9417 0.0000 6
151 66 0 20 65 0.4371 0.5038 0.7674 0.0000 7
130 51 0 25 54 0.3923 0.4857 0.6711 0.0000 8
154 58 0 27 69 0.3766 0.4567 0.6824 0.0000 9
0 0 0 0 0 0.0000 0.0000 0.0000 0.0000 reject
0 0 0 0 0 0.0000 0.0000 0.0000 0.0000 fail
1434 770 0 150 514 0.5370 0.5997 0.8370 0.0000 overall
Table 10.4: Table of error rates for
WESARD-en-a-stbset-of MNIST
true class returned by algorithm
class 0 1 2 3 4 5 6 7 8 9 reject fail
0|18 0 o 2 1 1 2 0 1 2 50 0
1 0 82 5 0 1 o 1 o 3 3 53 0
2 1 0O 102 0 0 2 0 2 4 O 34 0
3 0 O 6 77 0O 1 0 0 1 9 55 0
41 0 5 0O 0 78 1 1 3 2 3 43 0
5 0 1 2 3 1 79 1 O 0 1 49 0
6 5 1 o o0 O o0 979 o0 o0 O 42 0
7 0O O 0 10 0 1 o0 66 1 8 65 0
8 0 4 3 4 0 O 5 4 51 5 54 0
91 4 5 o 6 1 2 o0 6 3 58 69 0
reject | O O o o0 o O o o0 o0 o 0 0
fail 0O O o o0 o O o o0 o0 o 0 0

As a consequence, it is also much quicker to train.

Table 10.5: Class confusion matrix for
WISARD on a subset of MNIST

HIGH-LEVEL VISION WITH MACHINE LEARNING 127

The mathematics behind the SVM is too messy to cover here, but the
principle behind it is easy to understand (Figure 10.5). Suppose some
feature vectors each belong to one of two classes and we need to determine
which class a new data point belongs to. If the feature vector has p
numbers in it, we are working in a p-dimensional space and need to
determine whether we can separate such points with a (p —1)-dimensional
hyperplane. If this is possible, we have a so-called linear classifier. There
are many hyperplanes that might classify the feature vector correctly.
Arguably the best maximises the separation (the margin) between the two

classes, so we choose the one for which the distance from it to the nearest
feature vector on each side is maximized. If such a hyperplane exists, it Figure 10.5: Principle of the support

is known as the maximum-margin hyperplane and the linear classifier it vector machine (image from the Wikipe-
dia). H; does not separate the classes.
H, does, but only with a small margin.
an algorithm for calculating this maximum margin classifier. Hj separates them with the maximum

defines is known as a maximum margin classifier. The SVM is essentially

The ability to produce only linear classifiers mean that the SVM cannot margin.

be used directly on problems where the classes cannot be separated by a
hyperplane. However, the people who dreamt up the SVM proposed the

use of a ‘kernel trick’ (Figure 10.6) which scales feature vectors non-linearly
so that the SVM is applicable (and then undoes the scaling).
How well does SVM perform on MNIST? To be able to ascertain that,
. . Figure 10.6: The ‘kernel trick’ for
one needs an implementation and, unusually, almost everyone uses the performing non-linear classification with
same software, 1ibSVM [Chang and Lin, 2011], which is available in C++ an SVM (image from the Wikipedia)
and Java. Just as with OpenCV though, people have produced ‘wrappers’

for the library for Python. The particular one that will be employed here is
Scikit-learn [Pedregosa et al., 2011]. A program for training and testing
SVM on MNIST is shown below, though without its support routines; you
will find the complete program in one of the laboratories.

(train-and-test-svm.py) =

1 #!/usr/bin/env python3
> "Train_up_a_SVM_and_run_it_on_its_test_dataset."
import sys, numpy, os, struct, array, time, datetime

<<Support routines for training on MNIST>>

7 # Ensure we were invoked with the database name.

s if len (sys.argv) != 3:

9 print ("Usage:", sys.argv[0], "<database>_<transcript>", file=sys.stderr)
10 exit (1)

12 # Import the machine learning technique and report its version.
13 import sklearn

14 print ("Using_Scikit-learn_version:", sklearn.__version__)

15 from sklearn import svm

17 # Read in the training and testing datasets and pull out the classes.
15 train_dataset = load_dataset (sys.argv[1l], "train")

v test_dataset = load_dataset (sys.argv[l], "test")

21 print_summary (sys.argv[l], train_dataset, test_dataset)

https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Support_vector_machine
https://en.wikipedia.org/wiki/Support_vector_machine

128 COMPUTER VISION

23 # Convert the training and test datasets into the formed needed by scikit-learn
2« # and do some sanity-checking.

25 train_images, train_labels = dataset_to_scikit (train_dataset)

26 test_images, test_labels = dataset_to_scikit (test_dataset)

23 assert len (train_images) == len (train_labels)
20 assert len (test_images) == len (test_labels)

51 # Create a classifier with the parameter settings from
2 # http://www.trungh.com/2013/04/digit-recognition-using-svm-in-python/
classifier = sklearn.svm.SVC (kernel="rbf", C=2.8, gamma=0.0073)

s # Train the SVM.
56 start = time.time ()
37 try:
classifier.fit (train_images, train_labels)
39 except ValueError:
40 print ("Alas,_training_failed!", file=sys.stderr)
41 exit (1)
22 duration = time.time() - start
4 print ("Training_took_%.1f_seconds." % duration)

4 # Evaluate the trained SVM on the test data and save the results in a form
4% # we can analyse with FACT.
start = time.time ()
ss results = classifier.predict (test_images)
4 duration = time.time() - start
so output_transcript (sys.argv[2], results, test_labels, sys.argv[l], duration)

Learning time on the author’s (pretty fast) laptop is about 4.5 minutes.
Testing takes about 1.5 minutes. We obtain the results in Table 10.6
(accuracies) and Table 10.7 (class confusion matrix). You will see that its
performance is a significant improvement on that of WISARD.

Although SVM can produce high accuracies, the author’s own experience
of it is that the parameters that tune how it learns need to be twiddled
with quite a lot in order to obtain good results. This can take a long time
and makes the technique less suitable for use in an autonomous vision
system.

10.6 The genetic algorithm

The genetic algorithm (GA) [Goldberg, 1989] starts with a population of N
individuals, often termed ‘chromosomes.” Each chromosome has a random
set of the P values that need to be optimised, with the equivalent location
in each chromosome representing the equivalent value (Figure 10.7). It
works by altering the values in the chromosomes in a way modelled loosely
on biological evolution, using operators that mimic sexual reproduction.
The population goes through a set of ‘generations’ and in each genera-
tion, some individuals ‘mate’ to produce ‘children’ by exchanging values
using principally a mechanism called crossover. As originally conceived,
a GA works with integers values only. That is not convenient for many
real-world problems, so an attractive alternative is a real-valued GA [Miih-
lenbein and Schlierkamp-Voosen, 1993]. To combine individual ‘chromo-

HIGH-LEVEL VISION WITH MACHINE LEARNING 129

tests TP TN FP FN accuracy recall precision specificity class
980 972 0 8 0 0.9918 1.0000 0.9918 0.0000 O
1135 1126 0 9 0 0.9921 1.0000 0.9921 0.0000 1
1032 1013 0 19 0 0.9816 1.0000 0.9816 0.0000 2
1010 993 0 17 0 0.9832 1.0000 0.9832 0.0000 3
982 963 0 19 0 0.9807 1.0000 0.9807 0.0000 4
892 867 0 25 0 0.9720 1.0000 0.9720 0.0000 5
958 944 0 14 0 0.9854 1.0000 0.9854 0.0000 6
1028 997 0 31 0 0.9698 1.0000 0.9698 0.0000 7
974 949 0 25 0 0.9743 1.0000 0.9743 0.0000 8
1009 973 0 36 0 0.9643 1.0000 0.9643 0.0000 9
0 0 0 0 0 0.0000 0.0000 0.0000 0.0000 reject
0 0 0 0 0 0.0000 0.0000 0.0000 0.0000 fail
10000 9797 0 203 0 0.9797 1.0000 0.9797 0.0000 overall
Table 10.6: Table of error rates for SVM
on MNIST
true class returned by algorithm
class 0 1 2 3 4 5 6 7 8 9 reject fail
0| 972 0 1 0 0 3 1 1 2 0 0 0
1 0 1126 3 1 0 1 1 1 2 0 0 0
2 5 1 1013 0 1 0 1 7 3 1 0 0
3 0 0 2 993 0 2 0 6 5 2 0 0
4 0 0 5 0 963 0 3 0 1 10 0 0
5 3 0 0 10 1 867 4 1 4 2 0 0
6 5 2 1 0 2 3 944 0 1 0 0 0
7 1 7 10 2 0 0 997 1 8 0 0
8 3 0 2 6 5 2 2 2 949 3 0 0
9 3 3 1 7 10 1 1 7 3 973 0 0
reject 0 0 0 0 0 0 0 0 0 0 0 0
fail 0 0 0 0 0 0 0 0 0 0 0 0
Table 10.7: Class confusion matrix for
SVM on MNIST
Figure 10.7: A population of N chromo-
1|43.2 13.2 33.2 33.2 somes, each having P values
21 —99 43 16 0
1070 8.7 3.2 5.4
—2.5 —2.0 2.1 2.3
17.6 6.1 8.3 0.15
pP| 3.2 3.2 1.03 3.21
1 2 3 N

130 COMPUTER VISION

somes’ in a real-valued GA, one simply draws an imaginary straight line
between equivalent locations in individuals and moves a random distance
a along that line to produce a ‘child’ value, as illustrated in Figure 10.8.

43.2 33.2
y
—99 A 16
107 2 3.2
20.0 10 10.1
17.6 > X 8.3
3.2 1.03
i j

If this procedure is carried out on the whole population equally, there
would be little progress towards finding an optimum (the best set of all p
values). However, if one allows only the best chromosomes (how these are
determined will be explained shortly) to mate, the individuals produced by
crossover tend towards the optimum values over a reasonable number of
generations. This procedure is helped if the best individuals in a particular
generation are allowed to ‘live’ into the next generation too, a feature
called elitism.

How well each individual performs is measured using a so-called cost
function or fitness function. This uses the values stored in each chromosome
of the population in turn and computes via some procedure how well the
chromosome solves the problem. In a cost function, lower values mean
better and a cost of zero corresponds to a perfect solution; conversely, in
a fitness function, larger values mean better and a perfect solution often
corresponds to a value of unity or 100. Here, we shall use cost functions
only.

From the above discussion, there remains the possibility that the pop-
ulation becomes trapped in the vicinity of a local minimum of the cost
function. Hence, a GA normally also performs mutation on some individu-
als, randomly changing the values in randomly-chosen locations to random
values. This will often ‘kick’ the population out of a local minimum.

Hence, to define a problem to a GA, all one needs to know in principle
are how many unknown parameters there are and a cost function. In
practice, a GA will work towards an optimum solution better if all the
parameters are bounded (e.g., an angle always lies in the range 0-27 or
0-360).

Figure 10.8: Real-valued crossover

HIGH-LEVEL VISION WITH MACHINE LEARNING 131

10.7 Genetic programming

As with the GA, most ML techniques operate on numeric values. Genetic
programming (GP) is different in that it delivers instead a program that
solves a problem. The origins of the technique date back to the mid-1980s
but it was the ground-breaking work of [Koza, 1992] that established the
technique as it is known today, showing that many then standard problems
in artificial intelligence could be solved using it. Koza subsequently applied
the technique to many other problems, showing for example that it could
both reproduce patented antenna designs and devise novel ones. A good
modern text that describes genetic programming (GP) is [Poli et al., 2008].

GP is similar in concept to a GA but rather than working with sets of
numbers, it uses parse trees. A parse tree is an internal representation of
a piece of computer code; for example, the one illustrated in Figure 10.9
corresponds to the program fragment

(if (= corners 4) if (corners == 4) {

(if (= asprat 1) if (asprat == 1) {
"square" return "square"
"rect") } else {

"other") return "rect"
}
} else {

return "other"

}

The code on the left above is presented in the Lisp programming language,
which is especially well-suited to this kind of task because it is easy to
write out a parse tree in this form and equally easy to convert Lisp into
a parse tree. It is also pretty compact. Equivalent C-like (Java-like, ...)
code is to the right above.

if

© ()

E] | return l return | "other" l

o) ()

Figure 10.9: Representation of program
Just as with a GA, GP ‘evolves’ the population using elitism, crossover code as a parse tree
and mutation. The latter two are somewhat different from the GA case,
however. Crossover moves entire sub-trees from one parent into another
to create a child (Figure 10.10), while mutation replaces a sub-tree with a

randomly-generated new one. Early research into GP found that programs

132 COMPUTER VISION

grew quickly, so it is common to limit the depth of programs when they
are created or modified using crossover or mutation.

g

O

(a) Parents with the crossover points indicated by x

/\

(b) Children showing the exchanged sub-trees

The individuals chosen to produce children programs are normally
chosen in GP using a mechanism called tournament selection. For a tourna-
ment of size N, N individuals are randomly selected from the population
and the best-performing of them (i.e., the one with the lowest cost) is
chosen as one parent. The same procedure is followed to select the second
parent, and then random nodes are chosen in both parents to select the
sub-trees that form the new individuals.

A cost function is used to determine how effective an evolved program
is. In the GP case, this is done by executing the program on known input
and determining how close the corresponding outputs are to the correct
ones. In our work (see below), our cost function counts the number of
pixels (for segmentation) or regions (for classification) that agree with
the training data; these are exactly the same criteria used for evaluating
their performance — this is not usually the case with machine learning
techniques such as neural networks.

The example parse trees discussed above employ numbers and logical
tests. These map well onto the arithmetic and logical types that all com-
puters represent. However, there is nothing in principle that prohibits GP
from evolving programs that make use of other operators, as long as there
is an implementation of those operators available when calculating the
cost function. Useful functions would be, for example, sqrt for calculating
square roots.

Working with PhD students Olly Oechsle, Panitnat Yimyam and now

O

Figure 10.10: Crossover exchanges
sub-trees between parse trees

http://www.bmva.org/thesis-archive/2009/2009-oechsle.pdf
http://www.bmva.org/thesis-archive/2014/2014-yimyam.pdf

HIGH-LEVEL VISION WITH MACHINE LEARNING 133

[¥ Gestures - Jasmine Vision System Buitder FEXE X Figure 10.11: Jasmine, a GP-based vision
F\\f Edit View. Classes Images Tools Evolve Help % @ System Construction tool
AN AN N U S R ——
Paint 1 Lines Target Erase Histogram Mask webcam3.png
o seqmentation | 8 Classication | 4 Vision System) webcamd.png

webcans.png
webean.prg
webcan?.png
webcams.png
webcans.png
webcan10.png
webcan!1.png
webcan12.png
webcan13.png
webcan14.png
webcan15.png

webcam.prg : 53,119 2 "@ @ @

B Background (backaround)
ot

Mask Statistics

lass Instarices Images
M Background
O object

Total 10005

1
1
2

Julian Forrester, the author’s own research uses GP to build vision systems.
The starting point is a ‘library’ of vision components that perform low-level
but useful tasks, many inspired by capabilities of the human visual system,
then uses GP to combine them into programs. The machine-generated
programs are then executed on real-world imagery, with the cost function
measuring how well the programs perform in a way analogous to a test
harness.

Olly’s research resulted in a system called Jasmine, and Panitnat en-
hanced and extended it (Figure 10.11). Rather than chasing the ultimate
in performance, we tried to show the versatility of the approach. Jasmine
was without any modification whatsoever able to produce solutions to the
problems shown in Figure 10.12. Only reading car number plates took
more than an hour to evolve the solution on a single desktop PC.

Over the summer of 2017, thanks to some external funding, Julian
Forrester (at the time an undergraduate student), Christine Clark and
the author re-implemented and extended the functionality of Jasmine
in Python to produce a package called EIVS (for Evolutionary Learning
Vision System); we are now using that to solve a number of real-world
image recognition problems. Our approach requires a minuscule number of
training images by comparison to neural networks and trains in the order of
ten minutes. Moreover, no reconfiguration of our system or customization
of the cost function is required to adapt it to different problems, you simply
present it with different training data. You don’t have to identify all the
pixels in a region in the training data; ELVS uses only what you have
marked. Moreover, the number of training images is normally small: in
most of our work, we use no more than five — compare this with the
number required to train a typical neural network!

http://vase.essex.ac.uk/software/jasmine/

134 COMPUTER VISION

Figure 10.12: Some of the problems for
which Jasmine has evolved solutions.
Top row: pasta shape identification,
identifying vehicles from aerial images.
Second row: gesture recognition in
videos. Third row: rice grading. Bottom
row: locating and reading car number
plates.

HIGH-LEVEL VISION WITH MACHINE LEARNING 135

To illustrate how to use ELVS, consider the rather simple problem shown
in Figure 10.13, which has two classes of fairly easily distinguished object. -
The following “task file” specifies the image input, the ground truth and
the annotation used in the latter for the various classes of output:

Adrian F Clark <alien@essex.ac.uk> 2023-03-16 '

name: test0l
type: vision

purpose:
Segmentation and classification of a synthetic test image.

class:
unknown #7F7F7f
background #ffffff
circle #0000ff
rectangle #ff0000

Figure 10.13: Training data and ground
truth for a simple vision task
property:

annotation marked

dataset: train
im-000.png gt-000.png

where the two images in the last line are those in Figure 10.13.

As explained above, ELVS initially combines image operators into pro-
grams randomly, evaluates them on the data and subsequently ‘mates’ the
best of them in each generation. Evolution is directed via a cost function
which simply counts the number of pixels the program gets wrong; if
two programs do equally well, it prefers the shorter one. ELVS evolves
a complete solution in two stages, first evolving a segmenter and then a
classifier. For the problem shown above, a short, perfect segmenter is

(CHrange input)

which calculates at each pixel of its input the difference between its largest
and smallest colour channels. Other perfect segmenters include

(Otsu (0-iml (iml-i (iml+iml (im> (Otsu (CHrange input)) 256i 0i) (CHmin
(im3*im3 (im3-i (im3*im3 (im3-i input 150i) (i-im3 5i input)) 25i)
(im3+im3 (im3/im3
(i-im3 25i input) (im3/im3 input input)) (im3+i (im3+i input 4i)

(i+ 41 100i)))))) 2i)))

which is harder to read but can nevertheless be understood. The best
segmenter the author has seen evolved is

(Otsu (grey input))

as it is exactly what he would write. EIVS comes up with this reasonably
often.

ELVS can evolve classifiers in different ways. The best is arguably to
evolve one for each class of output, in which case perfect ones for the two
classes are:

136 COMPUTER VISION

(f< 1f (occupancy input)) # circle
(f> (height input) (width input)) # rectangle

occupancy is the ratio of the area of the region to that of its bounding
box, which is unity for a rectangle and < 1 for a circle. For this task, the
height of a region being larger than its width is enough to identify it as a
rectangle. This is clearly not going to work for every rectangle but that
is a consequence of the choice of training data rather than the machine
learning process.

If we tell ELVS to return the label of a region, a good solution is:

(Label.if (f> (f/ 128f (occupancy input)) (f- (f+ (mean3 (im3+im3
(HSV Region.RGB) Region.RGB)) 8f) (i->f 150i))) rectangle)

which we can see is a good bit more complicated. A solution closer to the

Class 17

one-classifier-per-class result is

(Label.ifelse (! (f> (width input) (occupancy input))) rewm Class 22

class 1

circle rectangle)

However, this takes longer to run and finds a perfect solution less often, a roum Clas 37

class 2

consequence of needing to evolve a more complicated program.

We can improve on the one-classifier-per-class approach shown above by - hm
discarding the training data for the first class recognized once its classifier o

has been evolved, those for the second class once its classifier has been

unknown

evolved, and so on; see Figure 10.14. This means that ELVS evolves a series

of binary classifiers, leaving the most difficult until last. We have found
that this approach lets us evolve solutions to large multi-class problems))
Figure 10.14: A cascade of binary
fairly quickly, we just have to remember the order in which they were classifiers
evolved and run them on test images in the same order. We call this a
cascade as it is similar to a Haar cascade in the Viola-Jones algorithm.
A final point for you to note is that we have been able to read the
evolved solutions from EIVS and understand precisely how they work, a
desirable property known as explainable Al. As things currently stand, this

is not possible with any other machine learning technique.

11
Deep Learning and Neural Networks

Neural networks, especially those with many hidden layers, represent the current
state of the art in machine learning applied to computer vision. We review two
neural network approaches, the well-established Multi-Layer Perceptron and
the more recent Convolutional Neural Network, and touch on two interesting
current research themes, Yolo and GAN.

11.1 Introduction

The brains of animals consist of large numbers of simple neurons which
have many connections to other neurons. A neural network is a computer
model of this: an individual neuron contains little information but is con-
nected to many other neurons. They were first devised in the 1950s but
came to prominence in the 1980s, when they were shown to be able to
solve some problems that other techniques could not. Interest waned in
the 1990s because techniques such as SVM out-performed them, but has
been re-invigorated in recent years because networks with many layers
(so-called ‘deep learning’ networks) out-perform other mainstrea ML tech-
niques. (This kind of ‘arms race’ between machine learning techniques
will undoubtedly continue.)

We shall start by considering a ‘traditional’ neural network, the MLP,
because that establishes the fundamental idea of how neurons are modelled
and how training proceeds. We then move on to the CNN, looking at its
basic idea and some common instances of it in recent research.

11.2 The multi-layer perceptron

An MLP is a network of neurons that maps a set of inputs onto a set of
outputs — for example, with the MNIST dataset in mind, the pixels of an
image onto the 10 classes of digit. It consists of a number of layers of neur-
ons (simple computational elements) as illustrated in Figure 11.1, where
the circles represent neurons and the lines between them interconncetions.
An MLP is a fully-connected network as each node in one layer connects
with some weight w to every node in the following layer. The data are
presented at the input layer, which passes them to a single hidden layer in
Figure 11.1, and that in turn passes them to an output layer. The layers
can of course be organised in two dimensions to accept images as input,
and ‘deep learning’ architectures have more than one hidden layer.

138 COMPUTER VISION

Figure 11.1: Illustration of a multi-layer

perceptron. (Image from http://www.
slideshare.net/steveomohundro/
tedx-talk-whats-happening-with-artificial-intell

X
“‘»

SRS
LKL, oKD <L 7 SR
SRR [~ AR
ZFR I I lt"’

Input layer Hidden layer

Neural networks of the 1980s normally had a single hidden layer as
training a network took a long time; the longest time the author has 50 @
allowed a network to train was 88 cpu days — about five months of elapsed
time! (Thankfully, it worked well.) Recent years have seen computational

performance increase to the point that a dozen or more hidden layers are . C) activation Ny
. . . . 2 1
not uncommon, though training times remain long. function, f

The simplest neuron sums its N weighted inputs and uses the result as

the argument of a non-linear function f:
w O—()
N
y=f (Z xiwi) (11.1) Figure 11.2: Illustration of a single
i=1 neuron

where x; are the inputs to a neuron and w; the corresponding connection
strengths (Figure 11.2). Strictly speaking, to be a perceptron, the output
of the neuron should be zero or unity; but it has become customary to use
smoother functions, and popular choices are ‘sigmoid’ functions such as

y = tanh (inwi) (11.2)

1 '
= (11.3)
1+ exp(— 25 x;w;) o5

as shown in Figure 11.3. More sophisticated choices include various

and

y

different radial basis functions such as Gaussians. The activation function o
needs to be differentiable.
Training, or learning, rules specify an initial set of connection weightings

and indicate how these weights should be altered as training proceeds. In

supervised training, the neural network is supplied with a target output = s o s 10
for each input pattern. The quality of the output may be measured by Figure 11.3: Common choices for the
computing the RMS error, and one of several iterative schemes may be activation function of a neuron
employed to modify the weights so that this error is reduced. When the

error has been minimised (or, more commonly, a given number of iterations

or epochs have been done), the network is said to be trained. An acceptable

RMS target error is normally allowed so that, if the convergence error

is less than or equal to this target error, the neural network is said to

http://www.slideshare.net/steveomohundro/tedx-talk-whats-happening-with-artificial-intelligence
http://www.slideshare.net/steveomohundro/tedx-talk-whats-happening-with-artificial-intelligence
http://www.slideshare.net/steveomohundro/tedx-talk-whats-happening-with-artificial-intelligence
http://www.slideshare.net/steveomohundro/tedx-talk-whats-happening-with-artificial-intelligence

DEEP LEARNING AND NEURAL NETWORKS

have found the ‘correct’ result. It is also possible to train a network in
an unsupervised way. Here, the network adjusts its weights in response
to input patterns without any target answers and classifies the input into
similarity classes.

The learning rule is at the heart of a neural network as it determines
how the connection weights are adjusted as the neural network learns.
The error in output node j in the n® training example is given by

ej(n) = dj(n)—y;(n) (11.4)

where d; is the target value and y; the value produced by the neuron.
We then make corrections to the weights of the nodes based on those
corrections that minimize the error in the entire output, given by

&(n) =Y eX(n). (11.5)

Using gradient descent, the change in each weight is

Awji(n) = —n%yi<n> 116

where y; is the output of the previous neuron and 7 is the learning rate,
which has to be selected to ensure that the weights converge to a response
fast enough without producing oscillations.
For an output node, this derivative can be simplified to
9&(n) /

where ¢’ is the derivative of the activation function. Calculating the
change in weights to a hidden node is more difficult but it can be shown
that the relevant derivative is

2&(n) , 2&(n)

—_—— = vi(n ——Wgi(n 11.8
Fvi(y = ¢ i) 2 () (11.8)

k

which depends on the change in weights of the k™ nodes, the output layer.
So to change hidden layer weights, one must first change the output layer
weights according to the derivative of the activation function, and so this
algorithm represents a back-propagation of the activation function; hence,
this learning algorithm is known as back-propagation. (Note that there are
quite a few refinements beyond this set of equations to improve the speed
of learning.)

The training process requires many iterations and often takes consid-
erable time. A single example of each input pattern may in principle be
applied repeatedly but that tends to lead to ‘over-training,” where the
network recognises only that pattern. More effective training uses a large
set of training data; where that is not available, it is common to present
noisy, shifted or rotated versions of the images, and to vary the order of
presentation. This is known as data augmentation. To give an idea of the
numbers of images involved, the 6,000 training images in each class of
MNIST is regarded as being just about enough. Networks trained in this

139

140 COMPUTER VISION

way tend to be more effective on unseen data because they have learned
the types of variations that input of the different classes contain.

The trained network may be ‘run’ on test data simply and with great
speed: the data are applied to the input layer and the outputs of each
layer, calculated using the previously-determined weights, are propagated
forwards until the final outputs are found. The strength of the outputs
indicates the degree of resemblance between the input and the previously-
learned patterns.

11.3 MLP in software

There are quite a few pieces of software freely available that you can
download and use to explore different neural networks. The one that slots
most easily into the Python framework used in these notes is Scikit-learn
[Pedregosa et al., 2011]. However if you need to use machine learning
seriously in your work, you may wish to explore Google’s TensorFlow or
Berkeley’s Caffe; TensorFlow is certainly able to spread computation over
your CPUs or use the GPUs of your graphics card. It can be a bit of a faff
to make this work but the speed-up achieved can be dramatic.

With Scikit-learn installed, a program that applies an MLP to the
MNIST dataset is very similar to the SVM one presented in Chapter 10 —
thanks to Scikit-learn, the only significant change is in the creation of the
classifier.

(train-and-test-mlp.py) =

1 #!/usr/bin/env python3
> "Train_up_a_SVM_and_run_it_on_its_test_dataset."
import sys, numpy, os, struct, array, time, datetime

s <<Support routines for training on MNIST>>

7 # Ensure we were invoked with the database name.

s 1if len (sys.argv) != 4:

9 print ("Usage:", sys.argv[0], "<database>_<epochs>_<transcript>",
10 file=sys.stderr)

11 exit (1)

1z # Import the machine learning technique and report its version.
12 import sklearn

15 print ("Using_Scikit-learn_version:", sklearn.__version__)

16 from sklearn.neural_network import MLPClassifier

s # Read in the training and testing datasets and pull out the classes.
v train_dataset = load_dataset (sys.argv[1l], "train")
0 test_dataset = load_dataset (sys.argv[1l], "test")

2> print_summary (sys.argv[l], train_dataset, test_dataset)

24 # Convert the training and test datasets into the formed needed by scikit-learn
s # and do some sanity-checking.

6 train_images, train_labels = dataset_to_scikit (train_dataset)

27 test_images, test_labels = dataset_to_scikit (test_dataset)

DEEP LEARNING AND NEURAL NETWORKS

20 assert len (train_images) == len (train_labels)
o assert len (test_images) == len (test_labels)

»» # Create a classifier.
epochs = int (sys.argv[2])

34 classifier = MLPClassifier (hidden_layer_sizes=(50,), max_iter=epochs,
solver="sgd", alpha=1.0e-4, tol=le-4,
learning_rate_init=0.1, verbose=False)

55 # Train the MLP.
3 start = time.time ()
w0 try:
41 classifier.fit (train_images, train_labels)
42 except ValueError:
print ("Alas,_training_failed!", file=sys.stderr)
44 exit (1)
45 duration = time.time() - start
4 print ("Training_took_%.1f_seconds." % duration)

45 # Evaluate the trained MLP on the test data and save the results in a form

w0 # we can analyse with FACT.

so start = time.time ()

s1 results = classifier.predict (test_images)
s> duration = time.time() - start

output_transcript (sys.argv[3], results, test_labels, sys.argv[1l], duration)

You will see that there is one hidden layer of 50 neurons. If you run
this for 400 epochs:

python3 train-and-test-mlp.py mnist 400 mlp-mnist.res

you should find by running FACT on the transcript (see Chapter 6) that
the resulting accuracy is about 98%. Training for 400 epochs takes
21.8 seconds on the author’s laptop — we shall compare this with the time
taken to train a CNN below.

11.4 Convolutional neural networks

A CNN is not totally different to an MLP, more a kind of refinement of
it. Firstly, it is assumed that its inputs are images, and this allows the
network to be simplified somewhat. For a conventional MLP, even with the
minuscule images in MNIST (only 28 x 28 pixels), there are 784 weights to
be determined. Instead, a CNN consists of layers that can be thought of as
having a 3D arrangement of neurons, so they have a height and width that
correspond to the dimensions of the image and a ‘depth’ that corresponds
to an activation volume. Within each layer, the neurons are connected
only to a small region of the layer preceding it. CNNs are conventionally
constructed from a few different types of layers:

INPUT: this receives the raw pixels of the data; for colour data, the red,
green and blue (or HSV) values are normally presented to different
input neurons;

CONV: a convolutional or CONV layer computes the output of neurons
that are connected to local regions of in the input — in other words, it
performs a convolution with coefficients that are learned from the data;

141

142 COMPUTER VISION

RELU: this applies an element-wise activation function, which may be as
simple as max (0, x) to threshold at zero — clearly, this leaves the width
and height of the network unchanged;

POOL: this down-samples or averages regions of its input, so that the
overall width and height of the network is reduced;

FC: the final layer is usually fully-connected, just as in an MLP; it computes
the class scores and hence returns the calculated class of the pattern
presented at the network’s input.

You will see that a CNN transforms its input image, layer by layer, from
the original pixel values to the final class scores. CONV and FC layers
transform the data as a function of their inputs according to the weights
and biases of the neurons, which means they must be trained. Conversely,
RELU and POOL layers implement a fixed function and do not require
training.

At the time of writing, Scikit-learn does not support CNNs so we shall
implement one using TensorFlow and a more human-friendly wrapper for
it known as Keras. Even so, a program that builds a CNN and applies it to
MNIST is fairly similar to the MLP one above.

(train-and-test-cnn.py) =

1 #!/usr/bin/env python3
> "Train_up_a_SVM_and_run_it_on_its_test_dataset."
import sys, numpy, os, struct, array, time, datetime

<<Support routines for training on MNIST>>

7 # Ensure we were invoked with the database name.

s if len (sys.argv) != 4:

9 print ("Usage:", sys.argv[0], "<database>_<epochs>_<transcript>",
10 file=sys.stderr)

11 exit (1)

15 # Import the machine learning technique and report its version.

1+ import keras, tensorflow

15 from keras.models import Sequential

16 from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D

s # Read in the training and testing datasets and pull out the classes.
19 train_dataset = load_dataset (sys.argv[l], "train")
20 test_dataset = load_dataset (sys.argv[1l], "test")

22 print_summary (sys.argv[l], train_dataset, test_dataset)

2« # Convert the training and test datasets into the formed needed first by
»s # Scikit-lean and from that to Keras.

2 train_images, train_labels = dataset_to_scikit (train_dataset)

27 test_images, test_labels = dataset_to_scikit (test_dataset)

29 ny = 28
0 nx = 28
31 nc =1

32 nclasses = 10

DEEP LEARNING AND NEURAL NETWORKS

train_images.resize (60000,28,28,1)
s+ train_labels = keras.utils.to_categorical (train_labels, nclasses)
test_images.resize (10000,28,28,1)

;7 # Create the CNN.
s classifier = Sequential ()
39 classifier.add (Conv2D (32, kernel_size=(3, 3), activation="relu",
40 input_shape=(ny, nx, nc)))
421 classifier.add (Conv2D (64, (3, 3), activation="relu"))
42 classifier.add (MaxPooling2D (pool_size=(2, 2)))
s classifier.add (Dropout (0.25))
4 classifier.add (Flatten ())
45 classifier.add (Dense (128, activation="relu"))
4 classifier.add (Dropout (0.5))
classifier.add (Dense (nclasses, activation="softmax"))

4 # Train the CNN.
so epochs = int (sys.argv[2])
start = time.time ()
try:
classifier.compile (loss=keras.losses.categorical_crossentropy,

54 optimizer=keras.optimizers.Adadelta(),
metrics=["accuracy"])

56 classifier.fit (train_images, train_labels, batch_size=120, epochs=epochs,
verbose=0)

s except ValueError:

59 print ("Alas,_training_failed!", file=sys.stderr)

60 exit (1)

61 duration = time.time() - start

o2 print ("Training_took_%.1f_seconds." % duration)

o« # Evaluate the trained CNN on the test data and save the results in a form
es # we can analyse with FACT.

6 start = time.time ()

o7 #results = classifier.predict_classes (test_images)

6s results = numpy.argmax (classifier.predict (test_images), axis=-1)

6o duration = time.time() - start

70 output_transcript (sys.argv[3], results, test_labels, sys.argv[l], duration)

You should be able to see what the layers of the CNN are from the way
classifier is constructed. Running this program with

python3 train-and-test-cnn.py mnist 100 cnn-mnist.res

takes 50 minutes to train without GPU support, with the trained network
achieving about 95% accuracy on the MNIST test set.

Popular CNN architectures

LeNet. The first CNN was LeNet, developed by Yann LeCun, the inventor
of the CNN [LeCun et al., 1998] (Figure 11.4). This was used to read
handwritten digits, such as the numbers on cheques or the zip-code on
envelopes in the USA; indeed, LeCun had a large réle in popularising
MNIST as a standard task for comparing machine learning algorithms. It
has the structure

INPUT => CONV => RELU => POOL => CONV => RELU => POOL => FC => RELU => FC

143

144 COMPUTER VISION

which is a pair of CONV => RELU => POOL triplets followed by a pair of
fully-connected layers with thresholding.

C3: f. maps 16@10x10
sS4

52:1. maps r
B@14x14 r

C1. feature maps . maps 16@5x5
e 6@

INPUT
3232

|
Ful ccnvleminn | ‘Gaussian connections
Convolutions Subsampling Cormvolutions Subsampling Full connection

AlexNet. The paper that popularised CNNs in computer vision was AlexNet
[Krizhevsky et al., 2012], which presented a solution to the ImageNet Large
Scale Visual Recognition Challenge in 2012 and won by a substantial mar-
gin. AlexNet is similar to LeNet but features successive CONV layers;
previously, it was common to have a single CONV layer followed by RELU
and POOL layers. The architecture is shown in Figure 11.5, accompanied

by the types of feature that the different layers are purported to help
identify.

13 13
-l -
- = z’ﬁ: “ s dense’| [dens:
4 384 256 T
Max ‘

/ pooling 40% 4096

Numerical Data-driven

of 4

Conv 1: Edge+Blob Conyv 3: Texture Conv 5: Object Parts

GoogLeNet. The ILSVRC 2014 winner was a CNN from Google [Szegedy
et al., 2015]. Its main contribution was an inception module that dramat-
ically reduced the number of parameters in the network. Additionally,
GoogLeNet uses average pooling instead of FC layers at the output stage
of the network, eliminating many parameters that seem to have little ef-
fect. There are also several followup versions to GoogLeNet, most recently
Inception-v4.

VGGNet. The runner-up in ILSVRC 2014 was the one that became known
as VGGNet [Simonyan and Zisserman, 2015]. Its main contribution was
in showing that the depth of the network is a critical component for good
performance. Their final network contained 16 CONV/FC layers and
featured an homogeneous architecture, with only 3 x 3 convolutions and
2 x 2 pooling stages — but at the cost of being expensive to evaluate, using
more memory and having more parameters.

Figure 11.4: LeNet (image from http://
eblearn.sourceforge.net/beginner_
tutorial2_train.html)

Figure 11.5: AlexNet (image from
http://www.cc.gatech.edu/~hays/
compvision/proj6/)

http://eblearn.sourceforge.net/beginner_tutorial2_train.html
http://eblearn.sourceforge.net/beginner_tutorial2_train.html
http://eblearn.sourceforge.net/beginner_tutorial2_train.html
http://eblearn.sourceforge.net/beginner_tutorial2_train.html
http://www.image-net.org/challenges/LSVRC/
http://www.image-net.org/challenges/LSVRC/
http://www.cc.gatech.edu/~hays/compvision/proj6/
http://www.cc.gatech.edu/~hays/compvision/proj6/
http://www.cc.gatech.edu/~hays/compvision/proj6/

DEEP LEARNING AND NEURAL NETWORKS 145

AN A
o L T L N
s i L o 1)
e o '-II | !'. f mll II |;: | Iﬂ E' Il-;E |
[N A T | J £
[a\[1) [&\ Bleagnagtitdnaliagall
1y udg naf i i aatandRy/ 00 WA,
oelouleggdgadtaalllliina/wa/f8, N/
|!m I|E_E ['El""" [IE.I' '...) . 4R
LA { L) o JI.I II‘ K o h .-"II
NSO Convolution
Pooling
Do atiRormsaliz
I R e e R | R R R e R R R] PP Y
— 1818 2||8|5|&l|&|8 8| 8||5 8|5 =|5|8|%|5|[°°°®

ResNet. The Residual Network of [He et al., 2016] was the winner of
ILSVRC 2015. Its designers observed that adding more layers to a neural
network tends to increase its training error, and hypothesized that it might
be effective to encourage the network to learn the residual error instead
of the original mapping. As well as having a ludicrous number of layers,
some 200, it features special ‘skip’ connections and a heavy use of batch
normalization in training. The architecture also omits fully connected
layers at the end of the network. Nevertheless, due to their superior
performance, ResNets are currently regarded as being pretty much the
state of the art in performance on vision tasks.

YOLO. YOLO is an acronym for “you look only once.” It is a popular,
real-time real-time object detection system which performs pretty well on
benchmark tests against other forms of machine learning, including other
deep networks [Redmon and Farhadi, 2018]. The basic approach is to
apply a single neural network to the full image. This network divides the
image into regions and predicts bounding boxes and probabilities for each
region. These bounding boxes are weighted by the predicted probabilities.
Considering the entire image allows the network to consider the context
around potentially interesting regions, and it makes predictions in a single
network evaluation rather than the per-region evaluations used on most
other networks.

Another reason for the popularity of YOLO is that it is easy to install,
coming down to a few commands entered into a Unix terminal and pro-
duces decent visualizations of its results with little effort. This comes with
a default pre-trained network but its authors make it fairly straightforward
for users to train their own. There is much to commend YOLO, so if you
have an opportunity to investigate it, do create a Python virtual machine
and try it out within it.

Figure 11.6: GoogLeNet

(image from https://
leonardoaraujosantos.gitbooks.
io/artificial-inteligence/content/
googlenet.html)

Figure 11.7: VGGNet

(image from http://
matthijshollemans.com/2016/08/30/
vggnet-convolutional-neural-network-iphone/

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/googlenet.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/googlenet.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/googlenet.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/googlenet.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/googlenet.html
http://matthijshollemans.com/2016/08/30/vggnet-convolutional-neural-network-iphone/
http://matthijshollemans.com/2016/08/30/vggnet-convolutional-neural-network-iphone/
http://matthijshollemans.com/2016/08/30/vggnet-convolutional-neural-network-iphone/
http://matthijshollemans.com/2016/08/30/vggnet-convolutional-neural-network-iphone/

146 COMPUTER VISION

Figure 11.8: ResNet (image from https:

VGG-19 34-layer plain 34-layer residual //arxiv.org/pdf/1512.03385v1 . pdf)
image image image
nerns [3@conver |
size: 224
| 3conv,64 |
pool, /2
output
| 3x3conv, 128 | | 7x7conv,64,/2 | | »x7conv, 64,72 |
pool, /2 pool, /2 pool, /2
output
size: 56 | 3x3 conv, 256 | | 3x3 conv, 64 | [3x3 conv, 64 |
¥
| 3x3 conv, 256 | | 3x3 conv, 64 | | 3x3 conv, 64
I 3x3 conv, 256 | | 3x3 conv, 64 | | 3x3 conv, 64 |
¥
| 3x3 conv, 256 I | 3x3 conv, 64 | I 3x3 conv, 64
[3x3 conv, 64 I | 3x3 conv, 64]
3x3 conv, 64 3x3 conv, 64
I | I
pool, /2 | 3x3conv, 128,72 | [oomwimaz | .
e 28 + ¥ ¥ y
: [33cony, 512 | [3x3conv,128 | [33conv128 | -
| 33cony,512 | | 33conv, 128 | | 3x3conv, 128
¥ ¥ ¥
| 3x3conv,512 | | 33conv,128 | | 3x3conv, 128
[33cony, 512 | [33conv,128 | [3x3 conv, 128
\ 2 \ 2
3x3 conv, 128 3x3 conv, 128
L2
| 33conv,128 | | 3x3conv, 128
[33conv,128 | [3x3conv, 128
Sc:::p:: peol, /2 [3x3 conv, 256, /2 I | 3x3 conv, 256, /2 ']_.“-"‘-_
’ 0
| 3x3cony,512 | | 33conv,256 | [3x3conv,2s6 | .
| 33cony, 512 | | 3x3conv,256 | | 3x3conv, 256
| 33conys12 | | 33conv, 256 | | 3x3conv, 256
| 3x3conv,512 | | 3x3conv,256 | | 3x3conv, 256
Y ¥
| 3x3conv,256 | | 3x3conv, 256
3x3 conv, 256 3x3 conv, 256
[| I
[33conv, 256 | [33conv,256 |
h 4
| 3x3conv,256 | | 3x3conv, 256
3x3 conv, 256 3x3 conv, 256
I | I
3x3 conv, 256 3x3 conv, 256
[| I
[33conv,256 | | 3x3conv, 256
y Y N
‘;i‘;:",';t pool, /2 [3x3conv, 512,72 | [3x3conv,512,72 | e,
: \
| 33cony,512 | [3dcomvs2 |
[33cony,512 | [3a3conv,512 |
[33conv,512 | [33conv,512]
¥ Y
| 33conv,512 | | 3x3conv,512 |
[33conv,512 | [3x3conv,512 |
4 L7 —
output
size: 1 fc 4096 avg pool avg pool
| fc 4096 | | fc 1000 | | fc 1000 |

fc 1000

https://arxiv.org/pdf/1512.03385v1.pdf
https://arxiv.org/pdf/1512.03385v1.pdf
https://arxiv.org/pdf/1512.03385v1.pdf

DEEP LEARNING AND NEURAL NETWORKS

11.5 Transfer learning.

There is a trend towards transfer learning, “tapping off” the results of
some CNN stages — for example Figure 11.5 shows a stage that appears
to distinguish different textures — and using these as generic feature
detectors. The outputs from these stages are then used as input to (say)
a SVM or MLP, which is trained up on a specific problem. People have
reported some successes using this approach. The problem with it, in the
author’s opinion, is that the stages are not deliberately trained to exhibit
these types of behaviour; researchers are avoiding having to find a really
good solution to the individual stages by hoping that the neural network
will do it for them.

You will see that all these architectures are variations on a theme. The
author’s view of this is that the research community is still exploring what
these types of architectures do and how they do it. When there is a little
more understanding, I fully expect that someone will present a series
of stages that are better tailored to performing texture analysis, feature
extraction etc. and are able to be trained in isolation — as things stand,
very few research groups have the resources to train 200-layer CNNs on
the million of so images in the ImageNet dataset.

11.6 Discussion

Hardly a week seems to go by without a TV news programme announcing
that some problem or other has been “solved” using “deep learning.” Many
of these problems are in the vision domain and the machine learning
technique used is usually a CNN. They genuinely do represent the state of
the art in machine learning and computer vision.

However, you now have enough knowledge and insight to ask some
pertinent questions about these news articles. Firstly, what is meant by
“solved?” Is the result human-competitive — and to what extent has the
system been tuned to perform well on the benchmark? Is there evidence
that the system performs well on unseen data? You should be able to come
up with several other questions.

Research into CNNs proceeds at a furious pace but there are three
significant intellectual shortcomings. The first is that there is no real meth-
odology for designing them: designs are a combination of expediency (due
to the image size) and experience. A theory, or at least set of guidelines,
needs to emerge for them to become more accepted to those researchers
who care how things work.

Visually identical inputs to a deep network can yield totally different
classes as output, and both with high confidence values, as shown in Fig-
ure 11.9. As discussed in Goodfellow et al. [2015], this example adds an
imperceptibly small vector whose elements are equal to the sign of the
elements of the gradient of the cost function with respect to the input,
changing GoogLeNet’s classification of the image. Their e of 0.007 cor-
responds to the magnitude of the smallest bit of an 8-bit image encoding
after GoogLeNet’s conversion to real numbers.

This problem has given rise to an approach called Generative Adversarial

147

148 COMPUTER VISION

Figure 11.9: Problematic classification
with deep networks (reproduced from
Goodfellow et al. [2015]

A

+.007 x

. T+
v Sgn(Val(6:2:0)) sign(V,(6,2,4)
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Networks (GANs), in which two neural networks are pitted against each
other to generate new, synthetic images that can pass for real ones; you
may have heard of “deepfakes” — though they can be used to mimic any
distribution of data. A generator network produces input to a discriminator
one; both are trained concurrently, with the generator trying to produce
examples that the discriminator cannot distinguish from real images, while
the discriminator tries to spot the generator’s fakes. The process runs until
the discriminator can no longer distinguish real images from fakes. The
discriminator resulting from this procedure tends to be much better at
distinguishing classes of input. Knowing what you know now, you might
like to reflect on comments earlier in these notes about the inclusion of
negative examples when training, and on what you already know about
augmenting training data — there is much to commend in this approach.

As always seems to be the case, other types of machine learning have
already explored this notion; for example, in genetic programming it is
known as co-evolution. In both disciplines, the act of generating more
difficult cases to train on improves the effectiveness of the trained system
to classify difficult inputs correctly, so there seems to be much to commend
it.

Ultimately, the most difficult problem is that CNNs in particular and
neural networks in general remain “black boxes”! techniques, giving the ! Meaning you cannot see inside them.
user no insights into what is happening within them. If all you need to do
is solve a particular problem, this isn’t really a problem; but if you need
to understand how a system works — which can be the case for medical
diagnosis, for example — a black box is not necessarily good enough.
The author regards these deep networks as excellent engineering but poor
science.

An unexpected consequence of this opaque nature of deep networks is
the rise of explainable AI, in which a human is able to interpret and explain
how the trained system operates in some detail — and you have already
seen that GP is an explainable Al technique.

If CNNs represent the state of the art, does this mean that computer
vision has been solved? Not in this author’s view. A single CNN architecture
does not span a range of problems and a human always seems to be
necessary to prepare the data or decide what is to be used for transfer
learning. If the aim is to mimic the generality of human vision, learning to
solve new visual tasks simply by looking at images — which is what the
author researches — this is not the solution.

Epilogue

The material presented here has given you an overview of computer vision
but not really much depth. There are many techniques that we have
not considered, either because they do not fall neatly into the lecture
series or because they are too complicated to present in the time available;
and I have been economical with the mathematical detail — my aim has
been to give you an understanding of how and why techniques work. Of
course, there is an awful lot of exciting stuff that can be done using only
the computer vision techniques we have considered. In particular, the
machine learning approaches outlined in the last couple of chapters hold
much promise — but this is an area that is evolving rapidly, so expect
much of the detail to change.

Whenever you look at the world around you, think of the cues you
are using to work out an object’s shape, or distance, or texture. Not
until researchers have worked out how to emulate these processes and
assimilate them in some system does computer vision stand any real chance
of competing with the human visual system. Trying to get there is a
fascinating problem.

Colophon One of the sadnesses of modern publishing is that authors give
very little information regarding how their documents appear or were
prepared; it is as though they take little pride in their work. The author’s
research area is image processing and computer vision, and one aspect of
image processing is controlling just how the little dots of toner appear on
a printed page. Some care has therefore been expended to make these
lecture notes easy to read online and in printed form, and the author would
welcome feedback where you do not find this to be the case.

This document was prepared using Emacs, the One True Editor, and
typeset using pdfEiIgX. The basic document style is tufte-book, which
supports the large number of marginal figures and notes that you see.
The body font is Bitstream Charter and the sans serif font Droid Sans.
The microtype package is used to enhance TgX’s already good letter- and
word-spacing algorithms. British hyphenation is used, thanks to the hard
work of Dominik Wujastyk and Graham Toal. The graphs and many of the
figures were prepared using a combination of gnuplot and TikZ; I have
unashamedly stolen others from the Web (with acknowledgements, a good
lesson for when you write your project final report). Hyperlinks within the
document were generated using the excellent hyperref package due to
the late Sebastian Rahtz and Heiko Oberdiek. Sebastian was instrumental
in encouraging the development of pdfKIjEX and CTAN; I am proud to have
known him.

Bibliography

I. Aleksander, W. V Thomas, and P A. Bowden. WISARD: a radical step
forward in image recognition. Sensor Review, 4(3):120-124, 1984.

Ethem Alpaydin. Introduction to Machine Learning. MIT Press, third edition,
2014.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. SURF:
Speeded up robust features. Computer Vision and Image Understanding,
110(3):346-359, 2008.

G. E. Bostanci, N. Kanwal, and A. E Clark. Spatial statistics for image fea-
tures for performance comparison. IEEE Transactions on Image Processing,
23(1):153-162, January 2014.

Gary Bradski and Adrian Kaehler. Learning OpenCV — Computer Vision
with the OpenCV Library. O'Reilly, 2008.

Wilhelm Burger and Mark J. Burge. Digital Image Processing: An Algorithmic
Introduction Using Java. Springer, 2008.

Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua.
BRIEF: Binary robust independent elementary features. In Proceedings
of the 11th European Conference on Computer Vision, pages 778-792,
2010.

John E Canny. A computational approach to edge detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 8(6):679-698, Novem-
ber 1986.

Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. OpenPose:
Realtime multi-person 2d pose estimation using part affinity fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2019.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology, 2:
27:1-27:27, 2011. Software available at http://www.csie.ntu.edu.
tw/~cjlin/libsvm.

R. W. Connors and C. A. Harlow. A theoretical comparison of texture al-
gorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2(3):204-222, May 1980.

Tom N. Cornsweet. Visual Perception. Academic Press, 1970.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20
(3):273-297, 1995.

A. Criminisi, I. Reid, and A. Zisserman. A plane measuring device. In
Proceedings of the British Machine Vision Conference, pages 699-708,
September 1997.

N. Dalal and B. Triggs. Histograms of oriented gradients for human detec-
tion. In Proceedings of the International Conference on Computer Vision
and Pattern Recognition, June 2005.

E. Roy Davies. Computer Vision: Principles, Algorithms, Applications, Learn-
ing. Academic Press, 5% edition edition, 2017.

Richard O. Duda and Peter E. Hart. Pattern Classification and Scene Analysis.
Wiley, 1973.

Ronald A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Eugenics, 7(2):179-188, September 1936.

James D. Foley, Andries van Dam, Steve K. Feiner, and John E Hughes.
Computer Graphics: Principles and Practice. Addison-Wesley, second
edition edition, 1990.

W. Forstner, T. Dickscheid, and E Schindler. Detecting interpretable and ac-
curate scale-invariant keypoints. In Proceedings of the 12th International
Conference on Computer Vision, pages 2256-2263, 2009.

David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, January 1989.

Rafael C. Gonzalez and Richard E. Woods. Digital Image Procecssing.
Addison-Wesley, 1992.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. In Proceedings of the International
Conference on Learning Representations, May 2015.

R. M. Haralick, K. Shanmugam, and I. H. Dinstein. Textural features for
image classification. IEEE Transactions on Systems, Man and Cybernetics,
pages 610-621, 1973.

C. Harris and M. Stephens. A combined corner and edge detector. In
Proceedings of the 4th Alvey Vision Conference, pages 147-151, 1988.
http://www.bmva.org/bmvc/1988/avc-88-023.pdf.

Richard Hartley and Andrew Zisserman. Multiple View Geometry in Com-
puter Vision. Cambridge University Press, second edition edition, 2003.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In Proceedings of the International Conference on Computer
Vision and Pattern Recognition. 2016.

Anil K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, 1989.

BIBLIOGRAPHY 151

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

152 COMPUTER VISION

N. Kanwal, G. E. Bostanci, and A. E Clark. Matching corners using the
informative arc. IET Proceedings on Computer Vision, 8(3):245-253,
June 2014.

Donald E. Knuth. Literate programming. The Computer Journal, 27(2):
97-111, May 1984.

John R. Koza. Genetic Programming. MIT Press, 1992.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In E Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 25, pages 1097-1105.
Curran Associates, Inc., 2012. URL http://papers.nips.cc/paper/
4824 -imagenet-classification-with-deep-convolutional-neural-networks.
pdf.

K. L. Laws. Texture energy measures. In Proceedings of the Image Under-
standing Workshop, pages 47-51, 1979.

K. L. Laws. Textured image segmentation. Technical Report 940, University
of Southern California, 1980a.

K. L. Laws. Rapid texture identification. Proceedings of the SPIE, 238:
376-381, 1980b.

Y. LeCun, L. Bottou, Y. Bengio, and P Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278-
2324, November 1998.

David Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91-110, 2004. http:
//www.cs.ubc.ca/~lowe/papers/ijcv04.pdf.

H. Miihlenbein and D. Schlierkamp-Voosen. Predictive models for the
breeder genetic algorithm: I. continuous parameter optimization. Evol-
utionary Computation, 1(1):25-49, 1993.

T. Olaja, M. Pietikdinen, and D. Harwood. Performance evaluation of
texture measures with classification based on kullback discrimination of
distributions. In Proceedings of the International Conference on Pattern
Recognition, pages 582-585, 1994.

Nobuyuki Otsu. A threshold selection method from gray-level histograms.
IEEE Transactions on Systems, Man and Cybernetics, 9(1):62-66, 1979.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, and
David Cournapeau. Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12:2825-2830, 2011.

Rosalind W. Picard. Affective Computing. MIT Press, 2000.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A Field
Guide to Genetic Programming. Lulu Enterprises, UK Ltd, 2008. ISBN
9781409200734.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement,
2018.

Edward Rosten, Reid Porter, and Tom Drummond. Faster and better: A
machine learning approach to corner detection. IEEE Trans. Pattern
Analysis and Machine Intelligence, 32:105-119, 2010.

Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. ORB:
An efficient alternative to SIFT or SURF. In Proceedings of the 2011
International Conference on Computer Vision, pages 2564-2571, 2011.

Scholarpedia. Scholarpedia article on eigenfaces, December 2009. http:
//www.scholarpedia.org/article/Eigenfaces.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In Proceeedings of the International
Conference on Learning Representations, 2015.

A. R. Smith. Color gamut transform pairs. In Proceedings of SIGGRAPH
1978, pages 12-19, 1978.

Stephen M. Smith and J. Michael Brady. SUSAN—a new approach to low
level image processing. Int. J. Comput. Vision, 23:45-78, May 1997.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proceedings of the
International Conference on Computer Vision and Pattern Recognition,
2015. URL http://arxiv.org/abs/1409.4842.

Richard Szeliski. Computer Vision: Algorithms and Applications. Springer,
2010. Available online at http://szeliski.org/Book/.

Paul Viola and Michael J. Jones. Robust real-time face detection. Interna-
tional Journal of Computer Vision, 57(2):137-154, 2004.

BIBLIOGRAPHY 153

http://www.scholarpedia.org/article/Eigenfaces
http://www.scholarpedia.org/article/Eigenfaces
http://arxiv.org/abs/1409.4842
http://szeliski.org/Book/

	An Introduction to Computer Vision
	Introduction
	Applications of image processing
	Computer vision in action
	Other types of sensor
	Image and video file formats
	Chris Greening's Sudoku Grab
	About the module
	Installing OpenCV on your own machine
	Further reading

	The Human Visual System
	The eye
	From the eye to the brain
	Inside the brain

	Vision Software
	Introduction
	Images and pixels
	Coding up algorithms
	Histograms and their manipulation
	Contrast-stretching and an improved histogram routine
	Histogram equalisation
	Content-based image retrieval using histograms

	Convolution
	Introduction
	Enhancing isolated points using convolution
	Blurring
	Using the median
	Other types of masks
	Implementing convolution
	Mathematical morphology
	Finding known patterns in images

	Low-Level Vision
	Introduction
	Isolating regions by thresholding
	Region labelling
	Describing regions
	A practical shape-based vision system
	Measuring texture

	Evaluating Vision Systems
	Introduction
	Evaluating a vision system
	Comparing vision systems
	Assessing colrec1
	Recognising Handwritten Digits
	Comparing Performance Figures on Different Datasets

	Intermediate-Level Vision
	Introduction
	The Canny edge detector
	Moravec's corner detector
	The corner detector of Harris and Stephens
	Other corner detectors
	The Hough transform for straight lines
	Describing corners
	SIFT and related techniques
	Local binary patterns

	Looking at Humans
	Introduction
	Locating Faces by Colour
	Viola-Jones: Haar Features and Adaptive Boosting
	Processing Face Images
	Recognising Faces: Eigenfaces
	HOG, the histogram of oriented gradients
	OpenPose and friends

	Vision in a 3D World
	Introduction
	The geometry of imaging
	Computational stereo
	Computational stereo in action
	Propagating uncertainty
	3D coordinate geometry
	Correcting perspective effects
	Visual structure from motion
	Visual SLAM

	High-Level Vision with Machine Learning
	Introduction
	Unsupervised learning using k-means
	Simple supervised learning with WISARD
	The MNIST test case
	Support vector machines
	The genetic algorithm
	Genetic programming

	Deep Learning and Neural Networks
	Introduction
	The multi-layer perceptron
	MLP in software
	Convolutional neural networks
	Transfer learning.
	Discussion

