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Where the discipline stands

With our current knowledge, we cannot predict how well a vision system will
work — unlike, say, designing turbine blades for a jet engine where materials
science, computational fluid dynamics etc give the designers confidence that
the turbine blades will work before having to build and test one

We can find out how well a vision system works only by building and testing
it

This shows the discipline has some way to go
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Ground truth

To be able to test a vision system, we need images or videos for which the
results are known — we call these ground truth

Ground truth is normally collected by having experts annotate the data in
some way

Even experts can get it wrong sometimes, so we usually involve more than
one expert and use those cases where they agree — though this can result
in difficult cases being omitted

Sometimes experts aren’t always needed, as with the citizen scientists in the
Galaxy Zoo projects
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https://www.zooniverse.org/projects/zookeeper/galaxy-zoo/


Our vision systems label images

For the problems we’ll consider in this course, the vision system will read an
image and assign a label to it, such as cancerous or benign in cancer
diagnosis

A more general problem is where there are several different regions in an
image, each of which has to be labelled — this is more difficult in practice
though the principles described here still apply
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What a vision system can produce

We give (say) an image containing a cancerous lesion to our vision system
and it is labelled as cancerous (it has found the right answer): a TRUE
POSITIVE

We give it (say) an image with no cancerous lesion but it is incorrectly
labelled as cancerous: a FALSE POSITIVE

We give it an image of (say) a cancerous lesion but the vision system rejects
it: a FALSE NEGATIVE

We give the vision system an image of (say) a coffee cup and it is rejected:
a TRUE NEGATIVE

There is very little training on negative outcomes in computer vision; there
should be more. We’ll see a good example of where it is done when we look
at the Viola-Jones algorithm for detecting faces.
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Receiver Operating Characteristic (ROC) curves

A line on a ROC curve is produced by changing the value of a tuning
parameter such as a threshold
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Interpreting a ROC curve

There is always a trade-off between a high true positive rate and a high
false positive rate

Closer to the top-left corner means the algorithm performs better
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Crossing ROC curves
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We might ask ourselves whether alg1 or alg2 is better
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Where to operate an algorithm

You can decide only in the context of the problem the vision system is being
used for

For cancer detection (say), we want the TP rate to be as high as possible so
we choose alg1 and operate it at point A on the graph, accepting that it
will generate more FPs

For secure access by face recognition (say), we want the FP rate to be as
low as possible so we choose alg2 and operate it at point B on the graph,
accepting that people may have to try several times

You’ll often see the area under the curve used to choose which algorithm is
better — but as we have just seen, this makes no sense operationally; and
as we shall see in a moment, no sense for comparison either
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Comparing performance

If you see two lines on a ROC curve or two accuracy figures in a table, you
might reasonably ask which is better

To help us get a grip on this, imagine taking a fair coin and tossing it a
number of times. Let us say that we obtain:

3 heads from 10 tosses;
30 heads from 100 tosses;
300 heads from 1,000 tosses.

Let us now consider which of these is the most surprising.
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The binomial distribution

A coin toss obeys a binomial distribution

P(t) =
(
N
t

)
pt(1− p)t

with mean Np and variance Np(1− p). As the coin is fair, p = 1
2 and so

the three cases work out as:

1 The expected number of heads (ie the mean) is Np = 5. The sd is√
Np(1− p) =

√
10× 1

2 ×
1
2 = 1.58. Hence, 3 heads is

(5− 3)/1.58 ≈ 1.3 sds from the mean.
2 30 heads is (50− 30)/5 = 4 sds from the mean.
3 300 heads is (500− 300)/15.8 ≈ 13 sds from the meam.

Adrian F. Clark <alien@essex.ac.uk>CSEE, University of EssexEvaluating Vision Systems 11 / 20



Counting successes and failures

Let’s take two algorithms and see if they succeed or fail on the same test
input:

if both succeed, we increase Nss by 1
if both fail, we increase Nff by 1
if the first algorithm being tested succeeds and the second fails, we
increase Nsf by 1
if the first algorithm fails and the second succeeds, we increase Nfs by 1
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McNemar’s test

Having accumulated Nss etc, we plug them into the formula

Z 2 = (|Nsf − Nfs |)2

Nsf + Nfs

Note that this doesn’t make use of Nss or Nff because they don’t provide
any useful information for the comparison

Because the procedure forces a binary choice to be made regarding which
one is better in each test, Z follows a binomial distribution, just like tossing
a coin

The binomial distribution is symmetric and bell-shaped
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Tails of the binomial distribution

B

Tails of the binomial distribution

When z = 1.96, there is a one-in-twenty chance that the results are not
statistically significant but are instead due to some quirk of the data

Adrian F. Clark <alien@essex.ac.uk>CSEE, University of EssexEvaluating Vision Systems 14 / 20



Critical values of Z

So when Z ≥ 1.96, we can be fairly happy that the two algorithms being
compared have different performances

This is a vastly better way of comparing performances than using ROC
curves. . . it is used in industry, or was when I worked there, but is rarely
used in academic papers — though I don’t understand why as it provides
irrefutable evidence that a new technique is an improvement on an existing
one
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Is one algorithm better than another?

If you want to decide whether one algorithm is better than another, the
critical value of Z is 1.646 rather than 1.96 — this is because we’re
performing a one-tailed test rather than a two-tailed one; these values are
given in Table 6.2 of the notes

McNemar’s test is used in fact compare in some of the laboratories
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Evaluating performance with FACT

You may already have used FACT to produce tables of TP etc and several
quantities calculated from those measures, such as specificity and recall

You can get their definitions by adding --detail=2 to the fact command
line

FACT also outputs a class confusion matrix; running it with --detail=2
also explains how it is interpreted
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MNIST

The MNIST dataset of handwritten digits has become a kind of standard for
evaluating vision systems:

60,000 training images
10,000 test images

though with small differences in the number in each class

People have recently started using a drop-in replacement for MNIST called
FASHION-MNIST, which is a more difficult problem
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Examples from the MNIST dataset
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Using MNIST for evaluating algorithms

Section 6.5 of the lecture notes give an example from some of my research
of testing a single machine learning technique, a Support Vector Machine,
on the MNIST dataset

You will see from the FACT-like tables that the accuracy achieved by the
SVM with my technique’s tuning parameter T = 1.0 is better than that
with T = 0.4, and using McNemar’s test confirms that the performance
differences are significant

Do study the class confusion matrices too: you’ll see that ‘3’ and ‘5’ are
often confused, as are ‘4’ and ‘9’ — these are not surprising — but did you
expect ‘2’ and ‘7’ to be confused?

This kind of study gives insight into how human-developed algorithms
work. . . though not into the shortcomings of solutions produced by machine
learning, a problem that will be mentioned again later in the module

Adrian F. Clark <alien@essex.ac.uk>CSEE, University of EssexEvaluating Vision Systems 20 / 20


