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What is intermediate-level vision?

In the early days of computer vision, it was realized that humans can
distinguish objects in scenes from line drawings — so, the argument goes,
this should be easier for computers too

The result of this was a focus on edge detection in images

We have already considered Sobel’s edge detector, using the masks

1 2 1 1 0 -1
0 0 0 2 0 -2

-1 -2 -1 1 0 -1

Experience with this led to the development of Canny’s edge detector in
about 1984
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John Canny’s edge detector

Based around three principles:

1 it should respond only to edges, and all edges should be found
2 edges should be found in the right places in images
3 a single edge should produce a single response

These principles led Canny to come up with a five-step algorithm
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Step 1: Gaussian blur

Convolve with a mask having a Gaussian profile to reduce noise and blur the
image a little

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-3 -2 -1  0  1  2  3

re
sp

on
se

distance from centre of mask (in s.d.s)

Gaussian profile

Adrian F. Clark <alien@essex.ac.uk>CSEE, University of EssexIntermediate-level vision 4 / 27



Step 2: Find differences in horizontal and vertical directions

We obtain H(x , y) and V (x , y) respectively in the two directions

x x+1 x x+1
-+---+---+---+---+---+- -+---+---+---+---+---+-
| | | | | | | | | | | |

-+---+---+---+---+---+- -+---+---+---+---+---+-
| | - | - | | | y | | - | + | | |

-+---+---+---+---+---+- -+---+---+---+---+---+-
| | + | + | | | y+1 | | - | + | | |

-+---+---+---+---+---+- -+---+---+---+---+---+-
| | | | | | | | | | | |

-+---+---+---+---+---+- -+---+---+---+---+---+-
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Step 3: Convert to magnitude and direction

We convert H and V into edge magnitude

M(x , y) =
√

H(x , y)2 + V (x , y)2

and

θ(x , y) = tan−1 V (x , y)
H(x , y

in the usual way

Note that computationally it makes more sense to use atan2() than
atan() as the former takes into account the signs of H and V correctly
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Step 4a: Angle quantization
We quantize the angle into four broad directions

1 (1, 0)
2 (1, 1)
3 (0, 1)
4 (−1, 1)
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Step 4b: Non-maximum suppression

Having quantized θ, we use it to step across the line and carry out
non-maximum suppression to thin the line to one pixel width
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Step 5: Edge linking by hysteresis thresholding
The above stages tend to produce line segments, chunks of a line rather
than complete ones, so we need to join them together where appropriate
We step over the image and increase the M of pixels with τL < M < τH (in
black) into stronger edge pixels only if they lie next to an edge pixel with
M > τH (in red)
This is most easily done recursively
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The Hough transform
Finding an edge is only part of the job; we often need to work out the
corresponding equation, and the Hough transform can do this
Although we’ll look only at the straight line case, the technique can be
applied to circles and other shapes
Even after edge linking, edge detectors tend to produce only edge segments
so we need to accumulate evidence as to what the line is
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The equation of a straight line is

y = ax + b

In the Hough transform, we re-arrange this into a function of a and b with
x and y giving the gradient and intercept respectively

b = −xa + y

What we do is draw an entire line in (a, b) space for each (x , y) point we
find in the image

We call the place in which we draw these lines an accumulator, adding 1 to
each accumulator element where the line appears
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Drawing into the Hough accumulator

Peaks in the accumulator correspond to lines in the original image
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Parameteric lines
We cannot use the method described above in practice because the gradient
a is infinite for vertical lines
Instead, we use a parametric form of the line and use (r , θ) as the axes of
the accumulator, meaning that we have to draw a sine wave for each (x , y)
point
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Applying the Hough transform
There are innumerable uses of the Hough transform but one of the most
obvious is in tracking the white lines at the edges of a road in order to alert
the driver if they stray from their lane

Lane-following using the Hough transform
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The aperture problem

Despite the focus on edge detection in the past, edges are of limited value
in practice because one cannot know where on a line a particular pixel is

This is not the case for a corner, so corner detection is much more useful
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Moravec’s corner detector
Consider three different cases:
A: in a uniform region
B: on an edge
C: on a corner

C

A
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We look at the same four adjacent pixels as in Canny’s edge detector,
displaced by 1. (1, 0), (1, 1), (0, 1) and (−1, 1)

At A, the differences between a pixel and the four adjacent ones is
always small
At B, the differences between a pixel and adjacent ones along the line
is small but across the line is large
At C, the differences between a pixel and the four adjacent ones is
always large

so we store the minimum of the differences in an ‘image’ and then look for
maxima in it to find the corners

This works reasonably well
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Harris and Stephens

Moravec isn’t the state of the art in corner detection; that is arguably the
detector due to Harris & Stephens, sometimes called the Plessey corner
detector; this is in OpenCV

It takes a mathematically more sophisticated approach than Moravec

With a little effort, it can be made to run in real time
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The FAST corner detector
Another corner detector worth knowing about is FAST, from Cambridge
It is based on the simple observation that over half the pixels surrounding a
corner must be light or dark
My experience with it is that it generates a lot of false positives
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The need to match corners
Finding corners in images is usually a first step in a processing pipeline
We usually want to find which corner in one image matches which one in
another
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Describing corners

Although I think my own corner descriptor, arc, is better, the way most
people describe corners is with BRIEF or its successor ORB

BRIEF samples points around a corner, storing 1 if above the centre value
and 0 otherwise
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Matching briefs

If we look at the same corner in another image and sample around it in the
same relative locations, we should get a similar binary pattern

We can measure how different these patterns are using XOR (exclusive OR),
a single operation on most computers, and then add up the number of bits
set to give a score

However, this is badly affected is there is a rotation or change of scale
between images

The ORB (“oriented BRIEF”) descriptor gets around the rotation problem
and is less susceptible to scale changes, and so is widely used
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Matching non-corner regions

We often want to match regions other than corners between images, so you
might ask whether there is something that can do that

The answer is that there are many, the most important of which is Lowe’s
Scale-Invariant Feature Detector (SIFT)

Although quite slow to compute (and patented), SIFT is reliable and tends
to match non-boundary regions — that makes it a good complement to
ORB etc
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SIFT in action

Matches found by SIFT
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SIFT and structure from motion
SIFT is commonly used in structure from motion, wherein 3D
reconstructions are built from photographs

3D reconstruction of Elmstead church using SIFT
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3D reconstruction of a coral reef made at Essex using SIFT
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Reconstructions can be pretty accurate

Coral and its 3D print
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