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What is low-level vision?

Uses pixel-level information, not things like edges and corners. . . and not
machine learning

What do we know about?

histograms
convolution and friends

This is enough for us to build a working vision system, as we shall see
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The approach

1 Distinguish foreground and background objects
2 Tidy up the objects
3 Describe the objects
4 Interpret these descriptions
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Distinguishing foreground and background

This is most easily done using histograms

We want well-separated peaks

I’ll describe the process as though the background is dark and the
foreground light but it could just as easily be the other way around
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Well-separated peaks and standard deviations

If the foreground and background peaks are to be separated, we really want
their s.d.s to be minimized

Where do we put our threshold to achieve this?

The best place is between the peaks
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Otsu’s method

Otsu was the first person to realize that minimizing the s.d. of the peaks
was the same as maximizing the distance between them — and that turns
out to be easier to do

The underlying maths is in the lecture notes; I promise not to test you on it!
The algorithm is under a page of Python (or C. . . ) and is on p59 of the
lecture notes
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Otsu’s method gives us an automatic way of finding a good threshold that
splits the background and foreground

It works only for two peaks as described here but can be extended to more

It works best when there are about the same number of pixels in foreground
and background

With it, we can binarize an image into light and dark regions
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Region labelling

Now that we have found distinct regions in the image, it would help if we
could assign the same number to all the pixels in each region

This is known as region labelling, connected-component labelling or blob
labelling

There are two ways to go about this
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Recursive region labelling

This is similar to a flood-fill algorithm in computer graphics

We scan the rows and columns of the image in the usual way until we meet
a non-background pixel at position 1, which we mark as a new region

We mark foreground pixel at position 2 as part of the same region and
recursively invoke ourself — and then at positions 3 and 4 when it
eventually returns

##################### '#' represents background
#####1256789#########
#####34 #########
#####################

The recursive invocations continue until we have filled positions 5–9 of the
first line; the other lines are filled from positions 3 and 4
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This recursive algorithm is compact and elegant — but because it is
recursive, it can easily overflow the stack space available to your program

HHHHHHHHHH -> <- SSSSSSSSSSSSSS
^ ^
0x0000 0xFFFF

The heap H (from malloc, new etc) typically starts at low memory and
grows upwards while the stack S starts at the top of memory and grows
downwards

There is usually an artificial limit placed on the maximum stack size (e.g., in
Java) to avoid it running into the heap

The bottom line is that the compact, elegant algorithm is poor in practice
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Non-recursive region labelling

##################### '#' represents background
#####1 #########
#####2 #########
#####################

We scan the rows and columns of the image as in the recursive case but,
when we find a new pixel in a region at position 1, we look at the north and
west neighbours: if one of them is already labelled, we use the same label,
otherwise we start a new region

The remainder of the region on the same line gets the same label from the
west neighbour

On the next line, at position 2, we get the same label from the north
neighbour
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There has to be special code for the first line and column

The numbering goes squiffy on U-shaped regions, requiring us maintain a
‘label equivalence’ table and then re-number some of the regions in a
second pass through the image

Together, these make the code quite a bit longer than for the recursive
algorithm. . . though it does work for any size image

Some implementations also look at the north-west pixel, and that can result
in a different set of regions — an example is given in Figure 5.3 of the notes
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What we end up with

The result of these algorithms is a set of separate image regions, each of
which has a separate label (number) to identify it

000000000000000000000000000000
000000001100000000222222222000
000001111111000000222222222000
000011111111100000222222222000
000001111111000000222222222000
000000011100000000000000000000
000000001000033000000000000000
000000000000000000000000000000

All we have to do now is find a way of describing each region
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Circularity

To determine whether a region is circular, we can find its boundary length
(we saw how to do this using morphology) and count the number of pixels
to measure its area

We know that C = 2πr and A = πr2, so we can calculate the circularity

C2

A − 4πr2

πr2 = 4π

If a feature has a circularity close to 4π, we can say it is circular
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Rectangularity

W
<------->

000000000000000000000000000000
000000001100000000222222222000 ^
000001111111000000222222222000 | H
000011111111100000222222222000 |
000001111111000000222222222000 v
000000011100003300000000000000
000000000000000000000000000000

If A is the number of pixels in region 2, W its width and H its height, then
we should expect its rectangularity

WH
A ≈ 1

Adrian F. Clark <alien@essex.ac.uk>CSEE, University of EssexLow-level vision 16 / 19



Oriented rectangles

One problem that arises with rectangles is that they are not necessarily
aligned with the edges of the images

When this is the case, you need to calculate an oriented bounding box to
find its height and width correctly
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More general features
If you are trying to match a shape which is more general than a circle or
rectangle, there are approaches such as

Extremal points in different directions can describe shape

Later in the course, we shall look at SIFT, which is often more useful in
practice as it considers both shape and appearance
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Texture

The processing we have considered here uses shape only

Many more vision problems also involve appearance — that is clearly the
case for e.g. face recognition

Sometimes, we have to identify similar textures (grass, sea, fabric. . . ) so
there need to be ways of describing them too

The lecture notes give the standard low-level ways of doing this, though
they are non-examinable: Haralick’s grey-level co-occurrence matrices and
Laws’ masks — although devised around 1980, there is still nothing around
that really improves on them
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